These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17207807)

  • 1. Fluorescence and interactions with thiol compounds of Nile Red-adsorbed gold nanoparticles.
    Lee KH; Chen SJ; Jeng JY; Cheng YC; Shiea JT; Chang HT
    J Colloid Interface Sci; 2007 Mar; 307(2):340-8. PubMed ID: 17207807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using nile red-adsorbed gold nanoparticles to locate glutathione within erythrocytes.
    Tseng WL; Lee KH; Chang HT
    Langmuir; 2005 Nov; 21(23):10676-83. PubMed ID: 16262336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation.
    Chen SJ; Chang HT
    Anal Chem; 2004 Jul; 76(13):3727-34. PubMed ID: 15228347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry.
    Huang YF; Chang HT
    Anal Chem; 2006 Mar; 78(5):1485-93. PubMed ID: 16503598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive detection of indoleamines by combination of nanoparticle-based extraction with capillary electrophoresis/laser-induced native fluorescence.
    Li MD; Tseng WL; Cheng TL
    J Chromatogr A; 2009 Sep; 1216(36):6451-8. PubMed ID: 19646710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent and symmetry-selective charge-transfer contribution to SERS in gold nanoparticle aggregates.
    Yoon JH; Park JS; Yoon S
    Langmuir; 2009 Nov; 25(21):12475-80. PubMed ID: 19817481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of short-chain thiols and disulfides onto gold under defined mass transport conditions: coverage, kinetics, and mechanism.
    Rouhana LL; Moussallem MD; Schlenoff JB
    J Am Chem Soc; 2011 Oct; 133(40):16080-91. PubMed ID: 21834581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate.
    Yu CJ; Tseng WL
    Langmuir; 2008 Nov; 24(21):12717-22. PubMed ID: 18839969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the interaction between 2-mercaptoethanol, dimercaprol and CdSe quantum dots.
    Dong F; Han H; Liang J; Lu D
    Luminescence; 2008; 23(5):321-6. PubMed ID: 18500695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry.
    Kawasaki H; Sugitani T; Watanabe T; Yonezawa T; Moriwaki H; Arakawa R
    Anal Chem; 2008 Oct; 80(19):7524-33. PubMed ID: 18778032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: absolute rate constants and assessment of biological relevance.
    Skaff O; Pattison DI; Davies MJ
    Biochem J; 2009 Jul; 422(1):111-7. PubMed ID: 19492988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anion-induced adsorption of ferrocenated nanoparticles.
    Stiles RL; Balasubramanian R; Feldberg SW; Murray RW
    J Am Chem Soc; 2008 Feb; 130(6):1856-65. PubMed ID: 18198868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification and reactivity of functional groups in the ligand shell of PEGylated gold nanoparticles via a fluorescence-based assay.
    Maus L; Spatz JP; Fiammengo R
    Langmuir; 2009 Jul; 25(14):7910-7. PubMed ID: 19419188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of solvation and the structure of adsorbates on the kinetics and mechanism of dimerization-induced compositional changes of mixed monolayers on TiO(2).
    Mann JR; Nevins JS; Soja GR; Wells DD; Levy SC; Marsh DA; Watson DF
    Langmuir; 2009 Oct; 25(20):12217-28. PubMed ID: 19697906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma.
    Shang L; Yin J; Li J; Jin L; Dong S
    Biosens Bioelectron; 2009 Oct; 25(2):269-74. PubMed ID: 19683912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticles decorated with oligo(ethylene glycol) thiols: protein resistance and colloidal stability.
    Zhang F; Skoda MW; Jacobs RM; Zorn S; Martin RA; Martin CM; Clark GF; Goerigk G; Schreiber F
    J Phys Chem A; 2007 Dec; 111(49):12229-37. PubMed ID: 17914772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, size control and fluorescence studies of gold nanoparticles in carboxymethylated chitosan aqueous solutions.
    Huang L; Zhai M; Peng J; Xu L; Li J; Wei G
    J Colloid Interface Sci; 2007 Dec; 316(2):398-404. PubMed ID: 17707389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear penetration of surface functionalized gold nanoparticles.
    Gu YJ; Cheng J; Lin CC; Lam YW; Cheng SH; Wong WT
    Toxicol Appl Pharmacol; 2009 Jun; 237(2):196-204. PubMed ID: 19328820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge dependence of ligand release and monolayer stability of gold nanoparticles by biogenic thiols.
    Chompoosor A; Han G; Rotello VM
    Bioconjug Chem; 2008 Jul; 19(7):1342-5. PubMed ID: 18553895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticle enhanced charge transfer in thin film assemblies of porphyrin-fullerene dyads.
    Kotiaho A; Lahtinen RM; Tkachenko NV; Efimov A; Kira A; Imahori H; Lemmetyinen H
    Langmuir; 2007 Dec; 23(26):13117-25. PubMed ID: 18004896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.