These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
591 related articles for article (PubMed ID: 17207985)
1. Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Dell'Amico E; Mazzocchi M; Cavalca L; Allievi L; Andreoni V Microbiol Res; 2008; 163(6):671-83. PubMed ID: 17207985 [TBL] [Abstract][Full Text] [Related]
2. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
3. Bacterial diversity promotes community stability and functional resilience after perturbation. Girvan MS; Campbell CD; Killham K; Prosser JI; Glover LA Environ Microbiol; 2005 Mar; 7(3):301-13. PubMed ID: 15683391 [TBL] [Abstract][Full Text] [Related]
4. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162 [TBL] [Abstract][Full Text] [Related]
5. Usefulness of the sensitivity-resistance index to estimate the toxicity of copper on bacteria in copper-contaminated soils. Kunito T; Senoo K; Saeki K; Oyaizu H; Matsumoto S Ecotoxicol Environ Saf; 1999 Oct; 44(2):182-9. PubMed ID: 10571465 [TBL] [Abstract][Full Text] [Related]
6. The dynamics of soil bacterial community structure in response to yearly repeated agricultural copper treatments. Ranjard L; Nowak V; Echairi A; Faloya V; Chaussod R Res Microbiol; 2008 May; 159(4):251-4. PubMed ID: 18434097 [TBL] [Abstract][Full Text] [Related]
7. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Gans J; Wolinsky M; Dunbar J Science; 2005 Aug; 309(5739):1387-90. PubMed ID: 16123304 [TBL] [Abstract][Full Text] [Related]
9. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Li Z; Xu J; Tang C; Wu J; Muhammad A; Wang H Chemosphere; 2006 Mar; 62(8):1374-80. PubMed ID: 16216305 [TBL] [Abstract][Full Text] [Related]
10. Microbial diversity and activity along the forefields of two receding glaciers. Sigler WV; Zeyer J Microb Ecol; 2002 May; 43(4):397-407. PubMed ID: 11953808 [TBL] [Abstract][Full Text] [Related]
11. Field and microcosm experiments to evaluate the effects of agricultural Cu treatment on the density and genetic structure of microbial communities in two different soils. Ranjard L; Echairi A; Nowak V; Lejon DP; Nouaïm R; Chaussod R FEMS Microbiol Ecol; 2006 Nov; 58(2):303-15. PubMed ID: 17064271 [TBL] [Abstract][Full Text] [Related]
12. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Guo Z; Megharaj M; Beer M; Ming H; Mahmudur Rahman M; Wu W; Naidu R Bioresour Technol; 2009 Sep; 100(17):3831-6. PubMed ID: 19349173 [TBL] [Abstract][Full Text] [Related]
13. Microbial community succession and bacterial diversity in soils during 77,000 years of ecosystem development. Tarlera S; Jangid K; Ivester AH; Whitman WB; Williams MA FEMS Microbiol Ecol; 2008 Apr; 64(1):129-40. PubMed ID: 18328082 [TBL] [Abstract][Full Text] [Related]
14. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. Gremion F; Chatzinotas A; Kaufmann K; Von Sigler W; Harms H FEMS Microbiol Ecol; 2004 May; 48(2):273-83. PubMed ID: 19712410 [TBL] [Abstract][Full Text] [Related]
15. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. Altimira F; Yáñez C; Bravo G; González M; Rojas LA; Seeger M BMC Microbiol; 2012 Sep; 12():193. PubMed ID: 22950448 [TBL] [Abstract][Full Text] [Related]
16. Resistance and resilience of Cu-polluted soil after Cu perturbation, tested by a wide range of soil microbial parameters. Deng H; Li XF; Cheng WD; Zhu YG FEMS Microbiol Ecol; 2009 Nov; 70(2):137-48. PubMed ID: 19663920 [TBL] [Abstract][Full Text] [Related]
17. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Duarte GF; Rosado AS; Seldin L; de Araujo W; van Elsas JD Appl Environ Microbiol; 2001 Mar; 67(3):1052-62. PubMed ID: 11229891 [TBL] [Abstract][Full Text] [Related]
18. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231 [TBL] [Abstract][Full Text] [Related]
19. Structure and diversity of arsenic resistant bacteria in an old tin mine area of Thailand. Jareonmit P; Sajjaphan K; Sadowsky MJ J Microbiol Biotechnol; 2010 Jan; 20(1):169-78. PubMed ID: 20134249 [TBL] [Abstract][Full Text] [Related]
20. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. Costa R; Götz M; Mrotzek N; Lottmann J; Berg G; Smalla K FEMS Microbiol Ecol; 2006 May; 56(2):236-49. PubMed ID: 16629753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]