These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 1720815)

  • 1. Changes in the distribution of extracellular matrix components accompany early morphogenetic events of mammalian cortical development.
    Sheppard AM; Hamilton SK; Pearlman AL
    J Neurosci; 1991 Dec; 11(12):3928-42. PubMed ID: 1720815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular matrix in early cortical development.
    Pearlman AL; Sheppard AM
    Prog Brain Res; 1996; 108():117-34. PubMed ID: 8979798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse.
    Sheppard AM; Pearlman AL
    J Comp Neurol; 1997 Feb; 378(2):173-9. PubMed ID: 9120058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path.
    Bicknese AR; Sheppard AM; O'Leary DD; Pearlman AL
    J Neurosci; 1994 Jun; 14(6):3500-10. PubMed ID: 8207468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibronectin-like immunoreactivity in the developing cerebral cortex.
    Stewart GR; Pearlman AL
    J Neurosci; 1987 Oct; 7(10):3325-33. PubMed ID: 3668630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal production of fibronectin in the cerebral cortex during migration and layer formation is unique to specific cortical domains.
    Sheppard AM; Brunstrom JE; Thornton TN; Gerfen RW; Broekelmann TJ; McDonald JA; Pearlman AL
    Dev Biol; 1995 Dec; 172(2):504-18. PubMed ID: 8612967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and targeting of subplate axons and establishment of major cortical pathways.
    De Carlos JA; O'Leary DD
    J Neurosci; 1992 Apr; 12(4):1194-211. PubMed ID: 1556593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex.
    Ye Q; Miao QL
    Matrix Biol; 2013 Aug; 32(6):352-63. PubMed ID: 23597636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic expression patterns of tenascin, proteoglycans, and cell adhesion molecules during human hair follicle morphogenesis.
    Kaplan ED; Holbrook KA
    Dev Dyn; 1994 Feb; 199(2):141-55. PubMed ID: 7515726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondroitin sulfate proteoglycans in the developing cerebral cortex: the distribution of neurocan distinguishes forming afferent and efferent axonal pathways.
    Miller B; Sheppard AM; Bicknese AR; Pearlman AL
    J Comp Neurol; 1995 May; 355(4):615-28. PubMed ID: 7636035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmentally regulated expression of a brain specific species of chondroitin sulfate proteoglycan, neurocan, identified with a monoclonal antibody IG2 in the rat cerebrum.
    Oohira A; Matsui F; Watanabe E; Kushima Y; Maeda N
    Neuroscience; 1994 May; 60(1):145-57. PubMed ID: 8052408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ancestry of the mammalian preplate and its derivatives: evolutionary relicts or embryonic adaptations?
    Aboitiz F; Montiel J; García RR
    Rev Neurosci; 2005; 16(4):359-76. PubMed ID: 16519011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix.
    Kostović I; Išasegi IŽ; Krsnik Ž
    J Anat; 2019 Sep; 235(3):481-506. PubMed ID: 30549027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the cortical layer I in rodents.
    Jiménez D; Rivera R; López-Mascaraque L; De Carlos JA
    Dev Neurosci; 2003; 25(2-4):105-15. PubMed ID: 12966209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deposition of extracellular matrix along the pathways of migrating fibroblasts.
    Halfter W; Liverani D; Vigny M; Monard D
    Cell Tissue Res; 1990 Dec; 262(3):467-81. PubMed ID: 1706644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the embryonic preplate on the organization of the cerebral cortex: a targeted ablation model.
    Xie Y; Skinner E; Landry C; Handley V; Schonmann V; Jacobs E; Fisher R; Campagnoni A
    J Neurosci; 2002 Oct; 22(20):8981-91. PubMed ID: 12388605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical localization of chondroitin sulfate proteoglycan and tenascin in the human eye compared with the HNK-1 epitope.
    Uusitalo M
    Graefes Arch Clin Exp Ophthalmol; 1994 Nov; 232(11):657-65. PubMed ID: 7531167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes.
    McKeon RJ; Schreiber RC; Rudge JS; Silver J
    J Neurosci; 1991 Nov; 11(11):3398-411. PubMed ID: 1719160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin.
    Whitby DJ; Longaker MT; Harrison MR; Adzick NS; Ferguson MW
    J Cell Sci; 1991 Jul; 99 ( Pt 3)():583-6. PubMed ID: 1719005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of extracellular matrix molecules in the embryonic rat olfactory pathway.
    Treloar HB; Nurcombe V; Key B
    J Neurobiol; 1996 Sep; 31(1):41-55. PubMed ID: 9120435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.