BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17208428)

  • 1. Jak2: normal function and role in hematopoietic disorders.
    Ihle JN; Gilliland DG
    Curr Opin Genet Dev; 2007 Feb; 17(1):8-14. PubMed ID: 17208428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms.
    Silvennoinen O; Hubbard SR
    Blood; 2015 May; 125(22):3388-92. PubMed ID: 25824690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The two faces of myeloproliferative neoplasms: Molecular events underlying lymphoid transformation.
    Holroyd A; Cross NC; Macdonald DH
    Leuk Res; 2011 Oct; 35(10):1279-85. PubMed ID: 21722956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JAK/STAT signal transduction: regulators and implication in hematological malignancies.
    Valentino L; Pierre J
    Biochem Pharmacol; 2006 Mar; 71(6):713-21. PubMed ID: 16426581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation loop tyrosines allow the JAK2(V617F) mutant to attain hyperactivation.
    Kundrapu K; Colenberg L; Duhé RJ
    Cell Biochem Biophys; 2008; 52(2):103-12. PubMed ID: 18841497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JAK2 and MPL mutations in myeloproliferative neoplasms.
    Koppikar P; Levine RL
    Acta Haematol; 2008; 119(4):218-25. PubMed ID: 18566540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The saga of JAK2 mutations and translocations in hematologic disorders: pathogenesis, diagnostic and therapeutic prospects, and revised World Health Organization diagnostic criteria for myeloproliferative neoplasms.
    Smith CA; Fan G
    Hum Pathol; 2008 Jun; 39(6):795-810. PubMed ID: 18538168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A recurrent mutation of the JAK2 gene in chronic myeloproliferative disorders].
    Berger R
    Pathol Biol (Paris); 2006 May; 54(4):182-4. PubMed ID: 16084028
    [No Abstract]   [Full Text] [Related]  

  • 9. A JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects.
    James C; Ugo V; Casadevall N; Constantinescu SN; Vainchenker W
    Trends Mol Med; 2005 Dec; 11(12):546-54. PubMed ID: 16271512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activating Janus kinase pseudokinase domain mutations in myeloproliferative and other blood cancers.
    Constantinescu SN; Leroy E; Gryshkova V; Pecquet C; Dusa A
    Biochem Soc Trans; 2013 Aug; 41(4):1048-54. PubMed ID: 23863177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The myeloproliferative neoplasms: insights into molecular pathogenesis and changes in WHO classification and criteria for diagnosis.
    Anastasi J
    Hematol Oncol Clin North Am; 2009 Aug; 23(4):693-708. PubMed ID: 19577165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. JAK2 activation in myeloproliferative neoplasms: a potential role for heterodimeric receptors.
    Reuther GW
    Cell Cycle; 2008 Mar; 7(6):714-9. PubMed ID: 18245948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Novel method in diagnosis of chronic myeloproliferative disorders--detection of JAK2 mutation].
    Rajnai H; Bödör C; Reiniger L; Timár B; Csernus B; Szepesi A; Csomor J; Matolcsy A
    Orv Hetil; 2006 Nov; 147(45):2175-9. PubMed ID: 17402211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCM1-JAK2-fusion: a potential treatment target in myelodysplastic-myeloproliferative and other hemato-lymphoid neoplasms.
    Hoeller S; Walz C; Reiter A; Dirnhofer S; Tzankov A
    Expert Opin Ther Targets; 2011 Jan; 15(1):53-62. PubMed ID: 21091042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation.
    Hammarén HM; Ungureanu D; Grisouard J; Skoda RC; Hubbard SR; Silvennoinen O
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4642-7. PubMed ID: 25825724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into the structure and function of the pseudokinase domain in JAK2.
    Silvennoinen O; Ungureanu D; Niranjan Y; Hammaren H; Bandaranayake R; Hubbard SR
    Biochem Soc Trans; 2013 Aug; 41(4):1002-7. PubMed ID: 23863170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses.
    Varghese LN; Ungureanu D; Liau NP; Young SN; Laktyushin A; Hammaren H; Lucet IS; Nicola NA; Silvennoinen O; Babon JJ; Murphy JM
    Biochem J; 2014 Mar; 458(2):395-405. PubMed ID: 24354892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine phosphorylation of the Janus kinase 2 activation loop is essential for a high-activity catalytic state but dispensable for a basal catalytic state.
    Chatti K; Farrar WL; Duhé RJ
    Biochemistry; 2004 Apr; 43(14):4272-83. PubMed ID: 15065871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the molecular characterization of Philadelphia-negative chronic myeloproliferative disorders.
    Pikman Y; Levine RL
    Curr Opin Oncol; 2007 Nov; 19(6):628-34. PubMed ID: 17906464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of constitutive activation of Janus kinase 2-V617F revealed at the atomic level through molecular dynamics simulations.
    Lee TS; Ma W; Zhang X; Giles F; Kantarjian H; Albitar M
    Cancer; 2009 Apr; 115(8):1692-700. PubMed ID: 19195039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.