These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 17208519)
1. Tuberculosis subunit vaccine design: the conflict of antigenicity and immunogenicity. Sable SB; Kalra M; Verma I; Khuller GK Clin Immunol; 2007 Mar; 122(3):239-51. PubMed ID: 17208519 [TBL] [Abstract][Full Text] [Related]
2. [Novel vaccines against M. tuberculosis]. Okada M Kekkaku; 2006 Dec; 81(12):745-51. PubMed ID: 17240920 [TBL] [Abstract][Full Text] [Related]
3. Tuberculosis subunit vaccine development: impact of physicochemical properties of mycobacterial test antigens. Sable SB; Plikaytis BB; Shinnick TM Vaccine; 2007 Feb; 25(9):1553-66. PubMed ID: 17166640 [TBL] [Abstract][Full Text] [Related]
4. The use of mutant mycobacteria as new vaccines to prevent tuberculosis. Hernàndez Pando R; Aguilar LD; Infante E; Cataldi A; Bigi F; Martin C; Gicquel B Tuberculosis (Edinb); 2006; 86(3-4):203-10. PubMed ID: 16542875 [TBL] [Abstract][Full Text] [Related]
5. Rational design of vaccines against tuberculosis directed by basic immunology. Reece ST; Kaufmann SH Int J Med Microbiol; 2008 Jan; 298(1-2):143-50. PubMed ID: 17702652 [TBL] [Abstract][Full Text] [Related]
6. Multicomponent antituberculous subunit vaccine based on immunodominant antigens of Mycobacterium tuberculosis. Sable SB; Verma I; Khuller GK Vaccine; 2005 Jul; 23(32):4175-84. PubMed ID: 15923065 [TBL] [Abstract][Full Text] [Related]
7. Re-formulation of selected DNA vaccine candidates and their evaluation as protein vaccines using a guinea pig aerosol infection model of tuberculosis. Vipond J; Clark SO; Hatch GJ; Vipond R; Marie Agger E; Tree JA; Williams A; Marsh PD Tuberculosis (Edinb); 2006; 86(3-4):218-24. PubMed ID: 16520093 [TBL] [Abstract][Full Text] [Related]
8. Differential immunogenicity and protective efficacy of DNA vaccines expressing proteins of Mycobacterium tuberculosis in a mouse model. Fan X; Gao Q; Fu R Microbiol Res; 2009; 164(4):374-82. PubMed ID: 17764918 [TBL] [Abstract][Full Text] [Related]
9. Fusion protein Ag85B-MPT64(190-198)-Mtb8.4 has higher immunogenicity than Ag85B with capacity to boost BCG-primed immunity against Mycobacterium tuberculosis in mice. Luo Y; Wang B; Hu L; Yu H; Da Z; Jiang W; Song N; Qie Y; Wang H; Tang Z; Xian Q; Zhang Y; Zhu B Vaccine; 2009 Oct; 27(44):6179-85. PubMed ID: 19712772 [TBL] [Abstract][Full Text] [Related]
10. The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1 immune response in mice. Palma C; Iona E; Giannoni F; Pardini M; Brunori L; Orefici G; Fattorini L; Cassone A Cell Microbiol; 2007 Jun; 9(6):1455-65. PubMed ID: 17250590 [TBL] [Abstract][Full Text] [Related]
11. Antituberculous vaccine development: a perspective for the endemic world. Verma I; Grover A Expert Rev Vaccines; 2009 Nov; 8(11):1547-53. PubMed ID: 19863247 [TBL] [Abstract][Full Text] [Related]
13. MPT-51/CpG DNA vaccine protects mice against Mycobacterium tuberculosis. Silva BD; da Silva EB; do Nascimento IP; Dos Reis MC; Kipnis A; Junqueira-Kipnis AP Vaccine; 2009 Jul; 27(33):4402-7. PubMed ID: 19500525 [TBL] [Abstract][Full Text] [Related]
14. Immunogenicity and protective efficacy of a DNA vaccine encoding the fusion protein of mycobacterium heat shock protein 65 (Hsp65) with human interleukin-2 against Mycobacterium tuberculosis in BALB/c mice. Wang LM; Bai YL; Shi CH; Gao H; Xue Y; Jiang H; Xu ZK APMIS; 2008 Dec; 116(12):1071-81. PubMed ID: 19133010 [TBL] [Abstract][Full Text] [Related]
16. Selection of novel TB vaccine candidates and their evaluation as DNA vaccines against aerosol challenge. Vipond J; Vipond R; Allen-Vercoe E; Clark SO; Hatch GJ; Gooch KE; Bacon J; Hampshire T; Shuttleworth H; Minton NP; Blake K; Williams A; Marsh PD Vaccine; 2006 Sep; 24(37-39):6340-50. PubMed ID: 16781800 [TBL] [Abstract][Full Text] [Related]
17. Interaction of Mycobacterium tuberculosis with the host: consequences for vaccine development. Dietrich J; Doherty TM APMIS; 2009 May; 117(5-6):440-57. PubMed ID: 19400867 [TBL] [Abstract][Full Text] [Related]
18. Therapeutic efficacy of a tuberculosis DNA vaccine encoding heat shock protein 65 of Mycobacterium tuberculosis and the human interleukin 2 fusion gene. Changhong S; Hai Z; Limei W; Jiaze A; Li X; Tingfen Z; Zhikai X; Yong Z Tuberculosis (Edinb); 2009 Jan; 89(1):54-61. PubMed ID: 19056317 [TBL] [Abstract][Full Text] [Related]
19. Supplementation with RD antigens enhances the protective efficacy of BCG in tuberculous mice. Kalra M; Grover A; Mehta N; Singh J; Kaur J; Sable SB; Behera D; Sharma P; Verma I; Khuller GK Clin Immunol; 2007 Nov; 125(2):173-83. PubMed ID: 17766185 [TBL] [Abstract][Full Text] [Related]
20. Quality and vaccine efficacy of CD4+ T cell responses directed to dominant and subdominant epitopes in ESAT-6 from Mycobacterium tuberculosis. Aagaard CS; Hoang TT; Vingsbo-Lundberg C; Dietrich J; Andersen P J Immunol; 2009 Aug; 183(4):2659-68. PubMed ID: 19620314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]