BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17208933)

  • 1. Genetic architecture of leaf ecophysiological traits in Helianthus.
    Brouillette LC; Rosenthal DM; Rieseberg LH; Lexer C; Malmberg RL; Donovan LA
    J Hered; 2007; 98(2):142-6. PubMed ID: 17208933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection on leaf ecophysiological traits in a desert hybrid Helianthus species and early-generation hybrids.
    Ludwig F; Rosenthal DM; Johnston JA; Kane N; Gross BL; Lexer C; Dudley SA; Rieseberg LH; Donovan LA
    Evolution; 2004 Dec; 58(12):2682-92. PubMed ID: 15696747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic selection on leaf ecophysiological traits in Helianthus.
    Donovan LA; Ludwig F; Rosenthal DM; Rieseberg LH; Dudley SA
    New Phytol; 2009 Aug; 183(3):868-879. PubMed ID: 19552693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing the origin of Helianthus deserticola: survival and selection on the desert floor.
    Gross BL; Kane NC; Lexer C; Ludwig F; Rosenthal DM; Donovan LA; Rieseberg LH
    Am Nat; 2004 Aug; 164(2):145-56. PubMed ID: 15278840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny strongly and differentially alters leaf economic and other key traits in three diverse Helianthus species.
    Mason CM; McGaughey SE; Donovan LA
    J Exp Bot; 2013 Oct; 64(13):4089-99. PubMed ID: 24078673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species.
    Lexer C; Welch ME; Durphy JL; Rieseberg LH
    Mol Ecol; 2003 May; 12(5):1225-35. PubMed ID: 12694286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin of ecological divergence in Helianthus paradoxus (Asteraceae): selection on transgressive characters in a novel hybrid habitat.
    Lexer C; Welch ME; Raymond O; Rieseberg LH
    Evolution; 2003 Sep; 57(9):1989-2000. PubMed ID: 14575321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are hybrid species more fit than ancestral parent species in the current hybrid species habitats?
    Donovan LA; Rosenthal DR; Sanchez-Velenosi M; Rieseberg LH; Ludwig F
    J Evol Biol; 2010 Apr; 23(4):805-16. PubMed ID: 20210826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsatellite signature of ecological selection for salt tolerance in a wild sunflower hybrid species, Helianthus paradoxus.
    Edelist C; Lexer C; Dillmann C; Sicard D; Rieseberg LH
    Mol Ecol; 2006 Dec; 15(14):4623-34. PubMed ID: 17107488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers.
    Donovan LA; Dudley SA; Rosenthal DM; Ludwig F
    Oecologia; 2007 May; 152(1):13-25. PubMed ID: 17165094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-creating ancient hybrid species' complex phenotypes from early-generation synthetic hybrids: three examples using wild sunflowers.
    Rosenthal DM; Rieseberg LH; Donovan LA
    Am Nat; 2005 Jul; 166(1):26-41. PubMed ID: 15937787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations.
    Jiang G; Zeng J; He Y
    Gene; 2014 Feb; 536(2):287-95. PubMed ID: 24361205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic architecture of novel traits in the hopi sunflower.
    Wills DM; Abdel-Haleem H; Knapp SJ; Burke JM
    J Hered; 2010; 101(6):727-36. PubMed ID: 20696668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen stress response of a hybrid species: a gene expression study.
    Brouillette LC; Donovan LA
    Ann Bot; 2011 Jan; 107(1):101-8. PubMed ID: 20947669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the leaf economics spectrum in herbs: Evidence from environmental divergences in leaf physiology across Helianthus (Asteraceae).
    Mason CM; Donovan LA
    Evolution; 2015 Oct; 69(10):2705-20. PubMed ID: 26339995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of correlated evolution and adaptive differentiation of stem and leaf functional traits in the herbaceous genus, Helianthus.
    Pilote AJ; Donovan LA
    Am J Bot; 2016 Dec; 103(12):2096-2104. PubMed ID: 27965237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and validation of QTL for Sclerotinia midstalk rot resistance in sunflower by selective genotyping.
    Micic Z; Hahn V; Bauer E; Melchinger AE; Knapp SJ; Tang S; Schön CC
    Theor Appl Genet; 2005 Jul; 111(2):233-42. PubMed ID: 15947909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of whole-plant biomass allocation and reproductive timing to habitat differentiation across the North American sunflowers.
    Mason CM; Goolsby EW; Davis KE; Bullock DV; Donovan LA
    Ann Bot; 2017 May; 119(7):1131-1142. PubMed ID: 28203721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive introgression of abiotic tolerance traits in the sunflower Helianthus annuus.
    Whitney KD; Randell RA; Rieseberg LH
    New Phytol; 2010 Jul; 187(1):230-239. PubMed ID: 20345635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants.
    Agüera E; Cabello P; de la Haba P
    Physiol Plant; 2010 Mar; 138(3):256-67. PubMed ID: 20051027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.