These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17208980)

  • 1. Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies.
    Bertonati C; Honig B; Alexov E
    Biophys J; 2007 Mar; 92(6):1891-9. PubMed ID: 17208980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complexation of semiflexible chains with oppositely charged cylinder.
    Cherstvy AG; Winkler RG
    J Chem Phys; 2004 May; 120(19):9394-400. PubMed ID: 15267879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GBr6NL: a generalized Born method for accurately reproducing solvation energy of the nonlinear Poisson-Boltzmann equation.
    Tjong H; Zhou HX
    J Chem Phys; 2007 May; 126(19):195102. PubMed ID: 17523838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation.
    Boschitsch AH; Fenley MO
    J Comput Chem; 2007 Apr; 28(5):909-21. PubMed ID: 17238171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of salt-dependent free energy of binding of β-lactoglobulin homodimer formation and mechanism of dimer formation using molecular dynamics simulation and three-dimensional reference interaction site model (3D-RISM): diffuse salt ions and non-polar interactions between the monomers favor the dimer formation.
    Srivastava R; Chattopadhyaya M; Bandyopadhyay P
    Phys Chem Chem Phys; 2020 Jan; 22(4):2142-2156. PubMed ID: 31912070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q; Wang J; Zhao HK; Luo R
    J Chem Phys; 2009 Apr; 130(14):145101. PubMed ID: 19368474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications.
    Grochowski P; Trylska J
    Biopolymers; 2008 Feb; 89(2):93-113. PubMed ID: 17969016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt effects on ligand-DNA binding. Minor groove binding antibiotics.
    Misra VK; Sharp KA; Friedman RA; Honig B
    J Mol Biol; 1994 Apr; 238(2):245-63. PubMed ID: 7512653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes.
    Harris RC; Bredenberg JH; Silalahi AR; Boschitsch AH; Fenley MO
    Biophys Chem; 2011 Jun; 156(1):79-87. PubMed ID: 21458909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coulombic free energy of polymeric nucleic acid: low- and high-salt analytical approximations for the cylindrical Poisson-Boltzmann model.
    Shkel IA
    J Phys Chem B; 2010 Aug; 114(33):10793-803. PubMed ID: 20681741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the association of cationic groove-binding drugs to DNA using a Poisson-Boltzmann approach.
    Fenley MO; Harris RC; Jayaram B; Boschitsch AH
    Biophys J; 2010 Aug; 99(3):879-86. PubMed ID: 20682266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and interaction in protein solutions as studied by small-angle neutron scattering.
    Chodankar S; Aswal VK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041931. PubMed ID: 16383444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the Poisson Boltzmann polyelectrolyte model for analysis of equilibria between single-, double-, and triple-stranded polynucleotides in the presence of K(+), Na(+), and Mg(2+) ions.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    J Biomol Struct Dyn; 2002 Oct; 20(2):275-90. PubMed ID: 12354079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt effects on polyelectrolyte-ligand binding: comparison of Poisson-Boltzmann, and limiting law/counterion binding models.
    Sharp KA; Friedman RA; Misra V; Hecht J; Honig B
    Biopolymers; 1995 Aug; 36(2):245-62. PubMed ID: 7492748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Like-charged protein-polyelectrolyte complexation driven by charge patches.
    Yigit C; Heyda J; Ballauff M; Dzubiella J
    J Chem Phys; 2015 Aug; 143(6):064905. PubMed ID: 26277164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using DelPhi to compute electrostatic potentials and assess their contribution to interactions.
    Oron A; Wolfson H; Gunasekaran K; Nussinov R
    Curr Protoc Bioinformatics; 2003 Aug; Chapter 8():Unit 8.4. PubMed ID: 18428711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interpretation of Mg(2+) binding isotherms for nucleic acids using Poisson-Boltzmann theory.
    Misra VK; Draper DE
    J Mol Biol; 1999 Dec; 294(5):1135-47. PubMed ID: 10600372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of Poisson-Boltzmann electrostatic free energy calculations through comparison with experimental mutagenesis data.
    Gorham RD; Kieslich CA; Nichols A; Sausman NU; Foronda M; Morikis D
    Biopolymers; 2011 Nov; 95(11):746-54. PubMed ID: 21538330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.