BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 17208992)

  • 1. Blind identification of the aortic pressure waveform from multiple peripheral artery pressure waveforms.
    Swamy G; Ling Q; Li T; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2007 May; 292(5):H2257-64. PubMed ID: 17208992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blind identification of the central aortic pressure waveform from multiple peripheral arterial pressure waveforms.
    Swamy G; Ling Q; Li T; Mukkamala R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1822-5. PubMed ID: 17945671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the aortic pressure waveform and beat-to-beat relative cardiac output changes from multiple peripheral artery pressure waveforms.
    Swamy G; Mukkamala R
    IEEE Trans Biomed Eng; 2008 May; 55(5):1521-9. PubMed ID: 18440898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An adaptive transfer function for deriving the aortic pressure waveform from a peripheral artery pressure waveform.
    Swamy G; Xu D; Olivier NB; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1956-63. PubMed ID: 19783780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the aortic pressure waveform from a radial artery pressure waveform via an adaptive transfer function: Feasibility demonstration in swine.
    Swamy G; Xu D; Mukkamala R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2362-4. PubMed ID: 19965187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the aortic pressure waveform from a peripheral artery pressure waveform via an adaptive transfer function.
    Swamy G; Mukkamala R; Olivier N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1385-8. PubMed ID: 19162926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of wave reflection using peripheral blood pressure waveforms.
    Kim CS; Fazeli N; McMurtry MS; Finegan BA; Hahn JO
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):309-16. PubMed ID: 25561452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics.
    Hope SA; Meredith IT; Cameron JD
    Clin Sci (Lond); 2004 Aug; 107(2):205-11. PubMed ID: 15139848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous ejection fraction estimation by model-based analysis of an aortic pressure waveform: comparison to echocardiography.
    Swamy G; Olivier B; Kuiper J; Mukkamala R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():963-6. PubMed ID: 18002118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to reconstruction of central aortic blood pressure using 'adaptive' transfer function.
    Hahn JO; Asada HH; Reisner AT; Jaffer FA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():813-6. PubMed ID: 19162781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous cardiac output monitoring by peripheral blood pressure waveform analysis.
    Mukkamala R; Reisner AT; Hojman HM; Mark RG; Cohen RJ
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):459-67. PubMed ID: 16532772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can a clinically useful aortic pressure wave be derived from a radial pressure wave?
    Söderström S; Nyberg G; O'Rourke MF; Sellgren J; Pontén J
    Br J Anaesth; 2002 Apr; 88(4):481-8. PubMed ID: 12066722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry.
    Fetics B; Nevo E; Chen CH; Kass DA
    IEEE Trans Biomed Eng; 1999 Jun; 46(6):698-706. PubMed ID: 10356876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single measurement estimation of central blood pressure using an arterial transfer function.
    Murphy L; Chase JG
    Comput Methods Programs Biomed; 2023 Feb; 229():107254. PubMed ID: 36459818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust pulse wave velocity estimation by application of system identification to proximal and distal arterial waveforms.
    Xu D; Ryan KL; Rickards CA; Zhang G; Convertino VA; Mukkamala R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3559-62. PubMed ID: 21097042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Authentication of Radial Versus Femoral Arterial Pressure Waveform-Derived Cardiac Output With Transesophageal Echocardiography-Derived Cardiac Output Measurements in Patients Undergoing On-Pump Coronary Bypass Surgery.
    Maddali MM; Waje ND; Sathiya PM
    J Cardiothorac Vasc Anesth; 2017 Aug; 31(4):1183-1189. PubMed ID: 28465122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aortic pressure waveform reconstruction using a multi-channel Newton blind system identification algorithm.
    Liu W; Li Z; Wang Y; Song D; Ji N; Xu L; Mei T; Sun Y; Greenwald SE
    Comput Biol Med; 2021 Aug; 135():104545. PubMed ID: 34144269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of arterial transfer functions for the derivation of aortic waveform characteristics.
    Hope SA; Tay DB; Meredith IT; Cameron JD
    J Hypertens; 2003 Jul; 21(7):1299-305. PubMed ID: 12817176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subject-specific estimation of central aortic blood pressure using an individualized transfer function: a preliminary feasibility study.
    Hahn JO; Reisner AT; Jaffer FA; Asada HH
    IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):212-20. PubMed ID: 22147332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.