These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 17209545)

  • 1. Functional interrogation of the kinome using nucleotide acyl phosphates.
    Patricelli MP; Szardenings AK; Liyanage M; Nomanbhoy TK; Wu M; Weissig H; Aban A; Chun D; Tanner S; Kozarich JW
    Biochemistry; 2007 Jan; 46(2):350-8. PubMed ID: 17209545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-wide discovery of unknown ATP-binding proteins and kinase inhibitor target proteins using an ATP probe.
    Adachi J; Kishida M; Watanabe S; Hashimoto Y; Fukamizu K; Tomonaga T
    J Proteome Res; 2014 Dec; 13(12):5461-70. PubMed ID: 25230287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive identification of staurosporine-binding kinases in the hepatocyte cell line HepG2 using Capture Compound Mass Spectrometry (CCMS).
    Fischer JJ; Graebner Baessler OY; Dalhoff C; Michaelis S; Schrey AK; Ungewiss J; Andrich K; Jeske D; Kroll F; Glinski M; Sefkow M; Dreger M; Koester H
    J Proteome Res; 2010 Feb; 9(2):806-17. PubMed ID: 20028079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput kinase profiling as a platform for drug discovery.
    Goldstein DM; Gray NS; Zarrinkar PP
    Nat Rev Drug Discov; 2008 May; 7(5):391-7. PubMed ID: 18404149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome-wide identification of staurosporine-binding kinases using capture compound mass spectrometry.
    Fischer JJ; Graebner Neé Baessler OY; Dreger M
    Methods Mol Biol; 2012; 795():135-47. PubMed ID: 21960220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High affinity targets of protein kinase inhibitors have similar residues at the positions energetically important for binding.
    Sheinerman FB; Giraud E; Laoui A
    J Mol Biol; 2005 Oct; 352(5):1134-56. PubMed ID: 16139843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tinkering outside the kinase ATP box: allosteric (type IV) and bivalent (type V) inhibitors of protein kinases.
    Cox KJ; Shomin CD; Ghosh I
    Future Med Chem; 2011 Jan; 3(1):29-43. PubMed ID: 21428824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro protein kinase activity measurement by flow cytometry.
    Bernsteel DJ; Roman DL; Neubig RR
    Anal Biochem; 2008 Dec; 383(2):180-5. PubMed ID: 18796290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new functional, chemical proteomics technology to identify purine nucleotide binding sites in complex proteomes.
    Hanoulle X; Van Damme J; Staes A; Martens L; Goethals M; Vandekerckhove J; Gevaert K
    J Proteome Res; 2006 Dec; 5(12):3438-45. PubMed ID: 17137346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of 5'-p-fluorosulfonylbenzoyl-2' (or 3')-(biotinyl)adenosine as an activity-based probe for protein kinases.
    Ratcliffe SJ; Yi T; Khandekar SS
    J Biomol Screen; 2007 Feb; 12(1):126-32. PubMed ID: 17166825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MALDI-TOF mass-spectrometry-based versatile method for the characterization of protein kinases.
    Kondo N; Nishimura S
    Chemistry; 2009; 15(6):1413-21. PubMed ID: 19115309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling protein kinases and other ATP binding proteins in Arabidopsis using Acyl-ATP probes.
    Villamor JG; Kaschani F; Colby T; Oeljeklaus J; Zhao D; Kaiser M; Patricelli MP; van der Hoorn RA
    Mol Cell Proteomics; 2013 Sep; 12(9):2481-96. PubMed ID: 23722185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting polypharmacology by binding site similarity: from kinases to the protein universe.
    Milletti F; Vulpetti A
    J Chem Inf Model; 2010 Aug; 50(8):1418-31. PubMed ID: 20666497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new paradigm for protein kinase inhibition: blocking phosphorylation without directly targeting ATP binding.
    Bogoyevitch MA; Fairlie DP
    Drug Discov Today; 2007 Aug; 12(15-16):622-33. PubMed ID: 17706543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of kinase inhibitor selectivity using a thermodynamics-based partition index.
    Cheng AC; Eksterowicz J; Geuns-Meyer S; Sun Y
    J Med Chem; 2010 Jun; 53(11):4502-10. PubMed ID: 20459125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding site similarity analysis for the functional classification of the protein kinase family.
    Kinnings SL; Jackson RM
    J Chem Inf Model; 2009 Feb; 49(2):318-29. PubMed ID: 19434833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinomics: characterizing the therapeutically validated kinase space.
    Vieth M; Sutherland JJ; Robertson DH; Campbell RM
    Drug Discov Today; 2005 Jun; 10(12):839-46. PubMed ID: 15970266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional classification of protein kinase binding sites using Cavbase.
    Kuhn D; Weskamp N; Hüllermeier E; Klebe G
    ChemMedChem; 2007 Oct; 2(10):1432-47. PubMed ID: 17694525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging.
    Mori T; Inamori K; Inoue Y; Han X; Yamanouchi G; Niidome T; Katayama Y
    Anal Biochem; 2008 Apr; 375(2):223-31. PubMed ID: 18191030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of potent and selective inhibitors of the mammalian target of rapamycin (mTOR) kinase.
    Nowak P; Cole DC; Brooijmans N; Bursavich MG; Curran KJ; Ellingboe JW; Gibbons JJ; Hollander I; Hu Y; Kaplan J; Malwitz DJ; Toral-Barza L; Verheijen JC; Zask A; Zhang WG; Yu K
    J Med Chem; 2009 Nov; 52(22):7081-9. PubMed ID: 19848404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.