These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 17210000)
21. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
22. Development and mechanisms of resistance to Bacillus thuringiensis endotoxin Cry1Ac in the American bollworm, Helicoverpa armigera (Hübner). Chandrashekar K; Gujar GT Indian J Exp Biol; 2004 Feb; 42(2):164-73. PubMed ID: 15282949 [TBL] [Abstract][Full Text] [Related]
23. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China. Wang L; Ma Y; Wan P; Liu K; Xiao Y; Wang J; Cong S; Xu D; Wu K; Fabrick JA; Li X; Tabashnik BE Insect Biochem Mol Biol; 2018 Mar; 94():28-35. PubMed ID: 29408651 [TBL] [Abstract][Full Text] [Related]
24. Host plant driven transcriptome plasticity in the salivary glands of the cabbage looper (Trichoplusia ni). Rivera-Vega LJ; Galbraith DA; Grozinger CM; Felton GW PLoS One; 2017; 12(8):e0182636. PubMed ID: 28792546 [TBL] [Abstract][Full Text] [Related]
25. The utility of camptothecin as a synergist of Bacillus thuringiensis var. kurstaki and nucleopolyhedroviruses against Trichoplusia ni and Spodoptera exigua. Sun S; Cheng Z; Fan J; Cheng X; Pang Y J Econ Entomol; 2012 Aug; 105(4):1164-70. PubMed ID: 22928294 [TBL] [Abstract][Full Text] [Related]
26. Effect of low levels of Bacillus thuringiensis exposure on the growth, food consumption and digestion efficiencies of Trichoplusia ni resistant and susceptible to Bt. Janmaat AF; Bergmann L; Ericsson J J Invertebr Pathol; 2014 Jun; 119():32-9. PubMed ID: 24727193 [TBL] [Abstract][Full Text] [Related]
27. CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Guo Z; Sun D; Kang S; Zhou J; Gong L; Qin J; Guo L; Zhu L; Bai Y; Luo L; Zhang Y Insect Biochem Mol Biol; 2019 Apr; 107():31-38. PubMed ID: 30710623 [TBL] [Abstract][Full Text] [Related]
28. Bacillus thuringiensis Cry1A toxins exert toxicity by multiple pathways in insects. Wang S; Kain W; Wang P Insect Biochem Mol Biol; 2018 Nov; 102():59-66. PubMed ID: 30278206 [TBL] [Abstract][Full Text] [Related]
29. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Oppert B; Kramer KJ; Johnson DE; MacIntosh SC; McGaughey WH Biochem Biophys Res Commun; 1994 Feb; 198(3):940-7. PubMed ID: 8117300 [TBL] [Abstract][Full Text] [Related]
30. Novel isolate of Bacillus thuringiensis subsp. thuringiensis that produces a quasicuboidal crystal of Cry1Ab21 toxic to larvae of Trichoplusia ni. Swiecicka I; Bideshi DK; Federici BA Appl Environ Microbiol; 2008 Feb; 74(4):923-30. PubMed ID: 18083867 [TBL] [Abstract][Full Text] [Related]
31. Genes and environment interact to determine the fitness costs of resistance to Bacillus thuringiensis. Raymond B; Sayyed AH; Wright DJ Proc Biol Sci; 2005 Jul; 272(1571):1519-24. PubMed ID: 16011928 [TBL] [Abstract][Full Text] [Related]
32. Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni. Herde M; Howe GA Insect Biochem Mol Biol; 2014 Jul; 50():58-67. PubMed ID: 24727019 [TBL] [Abstract][Full Text] [Related]
33. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Yang Y; Chen H; Wu Y; Yang Y; Wu S Appl Environ Microbiol; 2007 Nov; 73(21):6939-44. PubMed ID: 17827322 [TBL] [Abstract][Full Text] [Related]
34. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
36. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Wang P; Zhao JZ; Rodrigo-Simón A; Kain W; Janmaat AF; Shelton AM; Ferré J; Myers J Appl Environ Microbiol; 2007 Feb; 73(4):1199-207. PubMed ID: 17189446 [TBL] [Abstract][Full Text] [Related]
37. Managing the evolution of Bacillus thuringiensis resistance in natural populations of the European corn borer, Ostrinia nubilalis: host plant, host race and pherotype of adult males at aggregation sites. Bontemps A; Bourguet D; Pélozuelo L; Bethenod MT; Ponsard S Proc Biol Sci; 2004 Oct; 271(1553):2179-85. PubMed ID: 15475339 [TBL] [Abstract][Full Text] [Related]
38. Expressed sequence tags from larval gut of the European corn borer (Ostrinia nubilalis): exploring candidate genes potentially involved in Bacillus thuringiensis toxicity and resistance. Khajuria C; Zhu YC; Chen MS; Buschman LL; Higgins RA; Yao J; Crespo AL; Siegfried BD; Muthukrishnan S; Zhu KY BMC Genomics; 2009 Jun; 10():286. PubMed ID: 19558725 [TBL] [Abstract][Full Text] [Related]
39. Effect of Bt cotton expressing Cry1Ac and Cry2Ab, non-Bt cotton and starvation on survival and development of Trichoplusia ni (Lepidoptera: Noctuidae). Li YX; Greenberg SM; Liu TX Pest Manag Sci; 2007 May; 63(5):476-82. PubMed ID: 17421053 [TBL] [Abstract][Full Text] [Related]
40. Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Mayer RT; Inbar M; McKenzie CL; Shatters R; Borowicz V; Albrecht U; Powell CA; Doostdar H Arch Insect Biochem Physiol; 2002 Dec; 51(4):151-69. PubMed ID: 12432517 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]