These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 17210072)

  • 1. A generalized analysis of hydrophobic and loop clusters within globular protein sequences.
    Eudes R; Le Tuan K; Delettré J; Mornon JP; Callebaut I
    BMC Struct Biol; 2007 Jan; 7():2. PubMed ID: 17210072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A topology-based investigation of protein interaction sites using Hydrophobic Cluster Analysis.
    Lamiable A; Bitard-Feildel T; Rebehmed J; Quintus F; Schoentgen F; Mornon JP; Callebaut I
    Biochimie; 2019 Dec; 167():68-80. PubMed ID: 31525399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The respective roles of polar/nonpolar binary patterns and amino acid composition in protein regular secondary structures explored exhaustively using hydrophobic cluster analysis.
    Rebehmed J; Quintus F; Mornon JP; Callebaut I
    Proteins; 2016 May; 84(5):624-38. PubMed ID: 26868538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic clusters in protein structures.
    Arunachalam J; Gautham N
    Proteins; 2008 Jun; 71(4):2012-25. PubMed ID: 18186486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-intertwined binary patterns of hydrophobic/nonhydrophobic amino acids are considerably better markers of regular secondary structures than nonconstrained patterns.
    Hennetin J; Le TK; Canard L; Colloc'h N; Mornon JP; Callebaut I
    Proteins; 2003 May; 51(2):236-44. PubMed ID: 12660992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.
    Woodcock S; Mornon JP; Henrissat B
    Protein Eng; 1992 Oct; 5(7):629-35. PubMed ID: 1480617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new protein folding algorithm based on hydrophobic compactness: Rigid Unconnected Secondary Structure Iterative Assembly (RUSSIA). II: Applications.
    Znamenskiy D; Le Tuan K; Mornon JP; Chomilier J
    Protein Eng; 2003 Dec; 16(12):937-48. PubMed ID: 14983073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new protein folding algorithm based on hydrophobic compactness: Rigid Unconnected Secondary Structure Iterative Assembly (RUSSIA). I: Methodology.
    Znamenskiy D; Chomilier J; Le Tuan K; Mornon JP
    Protein Eng; 2003 Dec; 16(12):925-35. PubMed ID: 14983072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the conformation and geometry of loops in globular proteins: testing ArchDB, a structural classification of loops.
    Fernandez-Fuentes N; Querol E; Aviles FX; Sternberg MJ; Oliva B
    Proteins; 2005 Sep; 60(4):746-57. PubMed ID: 16021623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Order in Disorder as Observed by the "Hydrophobic Cluster Analysis" of Protein Sequences.
    Bitard-Feildel T; Lamiable A; Mornon JP; Callebaut I
    Proteomics; 2018 Nov; 18(21-22):e1800054. PubMed ID: 30299594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of protein secondary structure content for the twilight zone sequences.
    Homaeian L; Kurgan LA; Ruan J; Cios KJ; Chen K
    Proteins; 2007 Nov; 69(3):486-98. PubMed ID: 17623861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive repertoire of foldable regions within whole genomes.
    Faure G; Callebaut I
    PLoS Comput Biol; 2013 Oct; 9(10):e1003280. PubMed ID: 24204229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the reliability of sequence similarities detected through hydrophobic cluster analysis.
    Silva PJ
    Proteins; 2008 Mar; 70(4):1588-94. PubMed ID: 17918727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automatic method involving cluster analysis of secondary structures for the identification of domains in proteins.
    Sowdhamini R; Blundell TL
    Protein Sci; 1995 Mar; 4(3):506-20. PubMed ID: 7795532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining the fold space of membrane proteins: the CAMPS database.
    Martin-Galiano AJ; Frishman D
    Proteins; 2006 Sep; 64(4):906-22. PubMed ID: 16802318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underlying hydrophobic sequence periodicity of protein tertiary structure.
    Silverman BD
    J Biomol Struct Dyn; 2005 Feb; 22(4):411-23. PubMed ID: 15588105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):693-708. PubMed ID: 8182744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins.
    Avbelj F; Fele L
    J Mol Biol; 1998 Jun; 279(3):665-84. PubMed ID: 9641985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.