These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17210116)

  • 1. Tongue deformation, jaw movement and muscle activity during mastication in pigs.
    Liu ZJ; Kayalioglu M; Shcherbatyy V; Seifi A
    Arch Oral Biol; 2007 Apr; 52(4):309-12. PubMed ID: 17210116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal kinematics of the tongue in relation to muscle activity and jaw movement in the pig.
    Liu ZJ; Shcherbatyy V; Kayalioglu M; Seifi A
    J Oral Rehabil; 2009 Sep; 36(9):660-74. PubMed ID: 19650859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of intrinsic and extrinsic tongue muscles in feeding: electromyographic study in pigs.
    Kayalioglu M; Shcherbatyy V; Seifi A; Liu ZJ
    Arch Oral Biol; 2007 Aug; 52(8):786-96. PubMed ID: 17350586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination of cortically induced rhythmic jaw and tongue movements in the rabbit.
    Liu ZJ; Masuda Y; Inoue T; Fuchihata H; Sumida A; Takada K; Morimoto T
    J Neurophysiol; 1993 Feb; 69(2):569-84. PubMed ID: 8459287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrinsic tongue and suprahyoid muscle activities during mastication in freely feeding rabbits.
    Inoue M; Ariyasinghe S; Yamamura K; Harasawa Y; Yamada Y
    Brain Res; 2004 Sep; 1021(2):173-82. PubMed ID: 15342265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of food consistency on the pattern of extrinsic tongue muscle activities during mastication in freely moving rabbits.
    Inoue M; Harasawa Y; Yamamura K; Ariyasinghe S; Yamada Y
    Neurosci Lett; 2004 Sep; 368(2):192-6. PubMed ID: 15351447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tongue and jaw muscle activities during chewing and swallowing in freely behaving rabbits.
    Naganuma K; Inoue M; Yamamura K; Hanada K; Yamada Y
    Brain Res; 2001 Oct; 915(2):185-94. PubMed ID: 11595208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tongue, jaw, and lip muscle activity and jaw movement during experimental chewing efforts in man.
    Takada K; Yashiro K; Sorihashi Y; Morimoto T; Sakuda M
    J Dent Res; 1996 Aug; 75(8):1598-606. PubMed ID: 8906129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination between the masticatory and tongue muscles as seen with different foods in consistency and in reflex activities during natural chewing.
    Kakizaki Y; Uchida K; Yamamura K; Yamada Y
    Brain Res; 2002 Mar; 929(2):210-7. PubMed ID: 11864626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional volumetric change of the tongue during mastication in pigs.
    Liu ZJ; Yamamura B; Shcherbatyy V; Green JR
    J Oral Rehabil; 2008 Aug; 35(8):604-12. PubMed ID: 18482351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition from suckling to drinking at weaning: a kinematic and electromyographic study in miniature pigs.
    Thexton AJ; Crompton AW; German RZ
    J Exp Zool; 1998 Apr; 280(5):327-43. PubMed ID: 9503654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A comparative study between cortically induced fictive mastication and actual mastication in acute and chronic rabbits].
    Liu ZJ; Wang HY
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1994 Sep; 29(5):305-8, 320. PubMed ID: 7743868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time series analysis of jaw muscle contraction and tissue deformation during mastication in miniature pigs.
    Liu ZJ; Green JR; Moore CA; Herring SW
    J Oral Rehabil; 2004 Jan; 31(1):7-17. PubMed ID: 15125590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional properties of jaw and tongue muscles in rats fed a liquid diet after being weaned.
    Liu ZJ; Ikeda K; Harada S; Kasahara Y; Ito G
    J Dent Res; 1998 Feb; 77(2):366-76. PubMed ID: 9465169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mastication-induced modulation of the jaw-opening reflex during different periods of mastication in awake rabbits.
    Mostafeezur R; Yamamura K; Kurose M; Yamada Y
    Brain Res; 2009 Feb; 1254():28-37. PubMed ID: 19094972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination of jaw and extrinsic tongue muscle activity during rhythmic jaw movements in anesthetized rabbits.
    Ariyasinghe S; Inoue M; Yamamura K; Harasawa Y; Kurose M; Yamada Y
    Brain Res; 2004 Aug; 1016(2):201-16. PubMed ID: 15246856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations of muscle activities and jaw movements after blocking individual jaw-closing muscles in the miniature pig.
    Huang X; Zhang G; Herring SW
    Arch Oral Biol; 1993 Apr; 38(4):291-7. PubMed ID: 8517800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jaw-muscle electromyography during chewing in Belanger's treeshrews (Tupaia belangeri).
    Vinyard CJ; Williams SH; Wall CE; Johnson KR; Hylander WL
    Am J Phys Anthropol; 2005 May; 127(1):26-45. PubMed ID: 15486965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of jaw movements and masticatory muscle activity.
    Neeman H; McCall W; Plesh O; Bishop B
    Comput Methods Programs Biomed; 1990 Jan; 31(1):19-32. PubMed ID: 2311366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.
    Ishii T; Narita N; Endo H
    Physiol Behav; 2016 Jun; 160():35-42. PubMed ID: 27059322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.