These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17210198)

  • 1. Characterization of the proteins of bacterial strain isolated from contaminated site involved in heavy metal resistance--a proteomic approach.
    Bar C; Patil R; Doshi J; Kulkarni MJ; Gade WN
    J Biotechnol; 2007 Feb; 128(3):444-51. PubMed ID: 17210198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation, characterization of heavy metal resistant strain of Pseudomonas aeruginosa isolated from polluted sites in Assiut city, Egypt.
    Hassan SH; Abskharon RN; El-Rab SM; Shoreit AA
    J Basic Microbiol; 2008 Jun; 48(3):168-76. PubMed ID: 18506899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1.
    Yilmaz EI
    Res Microbiol; 2003; 154(6):409-15. PubMed ID: 12892847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of proteins in resistance mechanism of Pseudomonas fluorescens against heavy metal induced stress with proteomics approach.
    Sharma S; Sundaram CS; Luthra PM; Singh Y; Sirdeshmukh R; Gade WN
    J Biotechnol; 2006 Nov; 126(3):374-82. PubMed ID: 16787678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of the marine bacterium Pseudomonas fluorescens to an excess of heavy metals: physiological and biochemical aspects.
    Poirier I; Jean N; Guary JC; Bertrand M
    Sci Total Environ; 2008 Nov; 406(1-2):76-87. PubMed ID: 18793794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal resistant of E. coli isolated from wastewater sites in Assiut City, Egypt.
    Abskharon RN; Hassan SH; Gad El-Rab SM; Shoreit AA
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):309-15. PubMed ID: 18584108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals.
    Monchy S; Benotmane MA; Janssen P; Vallaeys T; Taghavi S; van der Lelie D; Mergeay M
    J Bacteriol; 2007 Oct; 189(20):7417-25. PubMed ID: 17675385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From industrial sites to environmental applications with Cupriavidus metallidurans.
    Diels L; Van Roy S; Taghavi S; Van Houdt R
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium.
    Xiong J; He Z; Liu D; Mahmood Q; Yang X
    Chemosphere; 2008 Jan; 70(3):489-94. PubMed ID: 17662336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments.
    Toes AC; Finke N; Kuenen JG; Muyzer G
    Arch Environ Contam Toxicol; 2008 Oct; 55(3):372-85. PubMed ID: 18273665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteomic analysis of antibiotic-sensitive and insensitive isolates of Orientia tsutsugamushi.
    Chao CC; Garland DL; Dasch GA; Ching WM
    Ann N Y Acad Sci; 2009 May; 1166():27-37. PubMed ID: 19538261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China.
    Wei G; Fan L; Zhu W; Fu Y; Yu J; Tang M
    J Hazard Mater; 2009 Feb; 162(1):50-6. PubMed ID: 18562095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment.
    Gremion F; Chatzinotas A; Kaufmann K; Von Sigler W; Harms H
    FEMS Microbiol Ecol; 2004 May; 48(2):273-83. PubMed ID: 19712410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques.
    Abbas Alkarkhi FM; Ismail N; Easa AM
    J Hazard Mater; 2008 Feb; 150(3):783-9. PubMed ID: 17590506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy-metal complexation by de novo peptide design.
    Farrer BT; Pecoraro VL
    Curr Opin Drug Discov Devel; 2002 Nov; 5(6):937-43. PubMed ID: 12478724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics of heavy metal stress responses in Sydney rock oysters.
    Muralidharan S; Thompson E; Raftos D; Birch G; Haynes PA
    Proteomics; 2012 Mar; 12(6):906-21. PubMed ID: 22539440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of psychrotrophic nitrobenzene-degrading strains from river sediments.
    Li Y; Hu H; Wu Q
    Bull Environ Contam Toxicol; 2007 Sep; 79(3):340-4. PubMed ID: 17639310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar.
    Frey B; Pesaro M; Rüdt A; Widmer F
    Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a mercury-reducing Bacillus cereus strain isolated from the Pulicat Lake sediments, south east coast of India.
    Kannan SK; Mahadevan S; Krishnamoorthy R
    Arch Microbiol; 2006 Apr; 185(3):202-11. PubMed ID: 16447070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA.
    Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW
    Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.