BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 17210233)

  • 1. Birth and death of genes promoted by transposable elements in Oryza sativa.
    Sakai H; Tanaka T; Itoh T
    Gene; 2007 May; 392(1-2):59-63. PubMed ID: 17210233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate and polarity of gene fusion and fission in Oryza sativa and Arabidopsis thaliana.
    Nakamura Y; Itoh T; Martin W
    Mol Biol Evol; 2007 Jan; 24(1):110-21. PubMed ID: 17035354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Jan; 24(1):171-81. PubMed ID: 17065597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza.
    Hurwitz BL; Kudrna D; Yu Y; Sebastian A; Zuccolo A; Jackson SA; Ware D; Wing RA; Stein L
    Plant J; 2010 Sep; 63(6):990-1003. PubMed ID: 20626650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.
    Kurtz S; Narechania A; Stein JC; Ware D
    BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of retrotransposon regulatory regions and its consequences on the Drosophila melanogaster and Homo sapiens host genomes.
    Fablet M; Rebollo R; Biémont C; Vieira C
    Gene; 2007 Apr; 390(1-2):84-91. PubMed ID: 17005332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon.
    Paterson AH; Chapman BA; Kissinger JC; Bowers JE; Feltus FA; Estill JC
    Trends Genet; 2006 Nov; 22(11):597-602. PubMed ID: 16979781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pack-MULE transposable elements mediate gene evolution in plants.
    Jiang N; Bao Z; Zhang X; Eddy SR; Wessler SR
    Nature; 2004 Sep; 431(7008):569-73. PubMed ID: 15457261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transposable elements and the evolution of gene expression.
    Wessler SR
    Symp Soc Exp Biol; 1998; 51():115-22. PubMed ID: 10645433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication.
    Chapman BA; Bowers JE; Feltus FA; Paterson AH
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2730-5. PubMed ID: 16467140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The preferential retention of starch synthesis genes reveals the impact of whole-genome duplication on grass evolution.
    Wu Y; Zhu Z; Ma L; Chen M
    Mol Biol Evol; 2008 Jun; 25(6):1003-6. PubMed ID: 18296698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of transposable elements to Bos taurus gene structure.
    Almeida LM; Silva IT; Silva WA; Castro JP; Riggs PK; Carareto CM; Amaral ME
    Gene; 2007 Apr; 390(1-2):180-9. PubMed ID: 17157447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid evolution in a pair of recent duplicate segments of rice.
    Jiang H; Liu D; Gu Z; Wang W
    J Exp Zool B Mol Dev Evol; 2007 Jan; 308(1):50-7. PubMed ID: 16838296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana.
    Hollister JD; Gaut BS
    Mol Biol Evol; 2007 Nov; 24(11):2515-24. PubMed ID: 17890239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptionally active gene fragments derived from potentially fast-evolving donor genes in the rice genome.
    Wang X; Yu Z; Yang X; Deng XW; Li L
    Bioinformatics; 2009 May; 25(10):1215-8. PubMed ID: 19289447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposable elements in the genomes: parasites, junks or drivers of evolution?
    Gbadegesin MA
    Afr J Med Med Sci; 2012 Dec; 41 Suppl():13-25. PubMed ID: 23678632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence.
    Johnson DA; Thomas MA
    Mol Biol Evol; 2007 Nov; 24(11):2412-23. PubMed ID: 17827171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana.
    Yang G; Zhang F; Hancock CN; Wessler SR
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10962-7. PubMed ID: 17578919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.