These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17210575)

  • 1. Oligomerization of the human prion protein proceeds via a molten globule intermediate.
    Gerber R; Tahiri-Alaoui A; Hore PJ; James W
    J Biol Chem; 2007 Mar; 282(9):6300-7. PubMed ID: 17210575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational pH dependence of intermediate states during oligomerization of the human prion protein.
    Gerber R; Tahiri-Alaoui A; Hore PJ; James W
    Protein Sci; 2008 Mar; 17(3):537-44. PubMed ID: 18218718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid-induced molten globule state of a prion protein: crucial role of Strand 1-Helix 1-Strand 2 segment.
    Honda RP; Yamaguchi KI; Kuwata K
    J Biol Chem; 2014 Oct; 289(44):30355-30363. PubMed ID: 25217639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides.
    Gill AC
    PLoS One; 2014; 9(1):e87354. PubMed ID: 24498083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molten globule precursor states are conformationally correlated to amyloid fibrils of human beta-2-microglobulin.
    Skora L; Becker S; Zweckstetter M
    J Am Chem Soc; 2010 Jul; 132(27):9223-5. PubMed ID: 20565073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway complexity of prion protein assembly into amyloid.
    Baskakov IV; Legname G; Baldwin MA; Prusiner SB; Cohen FE
    J Biol Chem; 2002 Jun; 277(24):21140-8. PubMed ID: 11912192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of disulfide bridge in the folding and stability of the recombinant human prion protein.
    Maiti NR; Surewicz WK
    J Biol Chem; 2001 Jan; 276(4):2427-31. PubMed ID: 11069909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain.
    Cobb NJ; Apetri AC; Surewicz WK
    J Biol Chem; 2008 Dec; 283(50):34704-11. PubMed ID: 18930924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-terminal domain of prion protein directs its oligomeric association.
    Trevitt CR; Hosszu LL; Batchelor M; Panico S; Terry C; Nicoll AJ; Risse E; Taylor WA; Sandberg MK; Al-Doujaily H; Linehan JM; Saibil HR; Scott DJ; Collinge J; Waltho JP; Clarke AR
    J Biol Chem; 2014 Sep; 289(37):25497-508. PubMed ID: 25074940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved amyloid core structure of stop mutants of the human prion protein.
    Zweckstetter M
    Prion; 2013; 7(3):193-7. PubMed ID: 23406905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methionine oxidation perturbs the structural core of the prion protein and suggests a generic misfolding pathway.
    Younan ND; Nadal RC; Davies P; Brown DR; Viles JH
    J Biol Chem; 2012 Aug; 287(34):28263-75. PubMed ID: 22654104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of prion protein to its native alpha-helical conformation is under kinetic control.
    Baskakov IV; Legname G; Prusiner SB; Cohen FE
    J Biol Chem; 2001 Jun; 276(23):19687-90. PubMed ID: 11306559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scrapie amyloid (prion) protein has the conformational characteristics of an aggregated molten globule folding intermediate.
    Safar J; Roller PP; Gajdusek DC; Gibbs CJ
    Biochemistry; 1994 Jul; 33(27):8375-83. PubMed ID: 8031772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct observation of protein folding, aggregation, and a prion-like conformational conversion.
    Ding F; LaRocque JJ; Dokholyan NV
    J Biol Chem; 2005 Dec; 280(48):40235-40. PubMed ID: 16204250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation and fibrillization of the recombinant human prion protein huPrP90-231.
    Swietnicki W; Morillas M; Chen SG; Gambetti P; Surewicz WK
    Biochemistry; 2000 Jan; 39(2):424-31. PubMed ID: 10631004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational polymorphism of the amyloidogenic peptide homologous to residues 113-127 of the prion protein.
    Satheeshkumar KS; Jayakumar R
    Biophys J; 2003 Jul; 85(1):473-83. PubMed ID: 12829502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion protein peptides induce alpha-helix to beta-sheet conformational transitions.
    Nguyen J; Baldwin MA; Cohen FE; Prusiner SB
    Biochemistry; 1995 Apr; 34(13):4186-92. PubMed ID: 7703230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Annealing prion protein amyloid fibrils at high temperature results in extension of a proteinase K-resistant core.
    Bocharova OV; Makarava N; Breydo L; Anderson M; Salnikov VV; Baskakov IV
    J Biol Chem; 2006 Jan; 281(4):2373-9. PubMed ID: 16314415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Pathogenic Mutation T182A Converts the Prion Protein into a Molten Globule-like Conformation Whose Misfolding to Oligomers but Not to Fibrils Is Drastically Accelerated.
    Singh J; Udgaonkar JB
    Biochemistry; 2016 Jan; 55(3):459-69. PubMed ID: 26713717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.