These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 1721061)
1. Self-translocation of diphtheria toxin across model membranes. Jiang JX; Chung LA; London E J Biol Chem; 1991 Dec; 266(35):24003-10. PubMed ID: 1721061 [TBL] [Abstract][Full Text] [Related]
2. Immunochemical analysis shows all three domains of diphtheria toxin penetrate across model membranes. Tortorella D; Sesardic D; Dawes CS; London E J Biol Chem; 1995 Nov; 270(46):27446-52. PubMed ID: 7499201 [TBL] [Abstract][Full Text] [Related]
3. Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. Wang Y; Malenbaum SE; Kachel K; Zhan H; Collier RJ; London E J Biol Chem; 1997 Oct; 272(40):25091-8. PubMed ID: 9312118 [TBL] [Abstract][Full Text] [Related]
4. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin. Wang Y; Kachel K; Pablo L; London E Biochemistry; 1997 Dec; 36(51):16300-8. PubMed ID: 9405065 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the conformation, hydrophobicity, and model membrane interactions of diphtheria toxin to those of formaldehyde-treated toxin (diphtheria toxoid): formaldehyde stabilization of the native conformation inhibits changes that allow membrane insertion. Paliwal R; London E Biochemistry; 1996 Feb; 35(7):2374-9. PubMed ID: 8652579 [TBL] [Abstract][Full Text] [Related]
6. Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5-7 form stable nonclassical inserted segments on the cis side of the bilayer. Rosconi MP; Zhao G; London E Biochemistry; 2004 Jul; 43(28):9127-39. PubMed ID: 15248770 [TBL] [Abstract][Full Text] [Related]
7. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin. Ren J; Sharpe JC; Collier RJ; London E Biochemistry; 1999 Jan; 38(3):976-84. PubMed ID: 9893993 [TBL] [Abstract][Full Text] [Related]
8. Fragment A of diphtheria toxin causes pH-dependent lesions in model membranes. Jiang GS; Solow R; Hu VW J Biol Chem; 1989 Oct; 264(29):17170-3. PubMed ID: 2793850 [TBL] [Abstract][Full Text] [Related]
9. Topography of diphtheria toxin A chain inserted into lipid vesicles. Hayashibara M; London E Biochemistry; 2005 Feb; 44(6):2183-96. PubMed ID: 15697244 [TBL] [Abstract][Full Text] [Related]
10. Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation. Jiang JX; Abrams FS; London E Biochemistry; 1991 Apr; 30(16):3857-64. PubMed ID: 1850289 [TBL] [Abstract][Full Text] [Related]
11. Characterization of diphtheria toxin-induced lesions in liposomal membranes. An evaluation of the relationship between toxin insertion and "channel" formation. Jiang GS; Solow R; Hu VW J Biol Chem; 1989 Aug; 264(23):13424-9. PubMed ID: 2474531 [TBL] [Abstract][Full Text] [Related]
12. Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies. Zhan H; Choe S; Huynh PD; Finkelstein A; Eisenberg D; Collier RJ Biochemistry; 1994 Sep; 33(37):11254-63. PubMed ID: 7537085 [TBL] [Abstract][Full Text] [Related]
13. Requirements for the translocation of diphtheria toxin fragment A across lipid membranes. Donovan JJ; Simon MI; Montal M J Biol Chem; 1985 Jul; 260(15):8817-23. PubMed ID: 4019456 [TBL] [Abstract][Full Text] [Related]
14. Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior. Hu VW; Holmes RK Biochim Biophys Acta; 1987 Aug; 902(1):24-30. PubMed ID: 3607056 [TBL] [Abstract][Full Text] [Related]
15. Topography of the hydrophilic helices of membrane-inserted diphtheria toxin T domain: TH1-TH3 as a hydrophilic tether. Wang J; Rosconi MP; London E Biochemistry; 2006 Jul; 45(26):8124-34. PubMed ID: 16800637 [TBL] [Abstract][Full Text] [Related]
16. The pH-dependent conformational change of diphtheria toxin. Dumont ME; Richards FM J Biol Chem; 1988 Feb; 263(4):2087-97. PubMed ID: 3339004 [TBL] [Abstract][Full Text] [Related]
17. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Malenbaum SE; Collier RJ; London E Biochemistry; 1998 Dec; 37(51):17915-22. PubMed ID: 9922159 [TBL] [Abstract][Full Text] [Related]
18. Topography of helices 5-7 in membrane-inserted diphtheria toxin T domain: identification and insertion boundaries of two hydrophobic sequences that do not form a stable transmembrane hairpin. Rosconi MP; London E J Biol Chem; 2002 May; 277(19):16517-27. PubMed ID: 11859081 [TBL] [Abstract][Full Text] [Related]
19. Chaperoning of insertion of membrane proteins into lipid bilayers by hemifluorinated surfactants: application to diphtheria toxin. Palchevskyy SS; Posokhov YO; Olivier B; Popot JL; Pucci B; Ladokhin AS Biochemistry; 2006 Feb; 45(8):2629-35. PubMed ID: 16489756 [TBL] [Abstract][Full Text] [Related]
20. Diphtheria toxin forms pores of different sizes depending on its concentration in membranes: probable relationship to oligomerization. Sharpe JC; London E J Membr Biol; 1999 Oct; 171(3):209-21. PubMed ID: 10501829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]