BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17210670)

  • 1. A CTCF-binding silencer regulates the imprinted genes AWT1 and WT1-AS and exhibits sequential epigenetic defects during Wilms' tumourigenesis.
    Hancock AL; Brown KW; Moorwood K; Moon H; Holmgren C; Mardikar SH; Dallosso AR; Klenova E; Loukinov D; Ohlsson R; Lobanenkov VV; Malik K
    Hum Mol Genet; 2007 Feb; 16(3):343-54. PubMed ID: 17210670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms' tumours.
    Dallosso AR; Hancock AL; Brown KW; Williams AC; Jackson S; Malik K
    Hum Mol Genet; 2004 Feb; 13(4):405-15. PubMed ID: 14681303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of differential methylation of the WT1 antisense regulatory region and relaxation of imprinting in Wilms' tumor.
    Malik K; Salpekar A; Hancock A; Moorwood K; Jackson S; Charles A; Brown KW
    Cancer Res; 2000 May; 60(9):2356-60. PubMed ID: 10811108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequent hypermethylation of a CTCF binding site influences Wilms tumor 1 expression in Wilms tumors.
    Zitzmann F; Mayr D; Berger M; Stehr M; von Schweinitz D; Kappler R; Hubertus J
    Oncol Rep; 2014 Apr; 31(4):1871-6. PubMed ID: 24534946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequent RASSF1A tumour suppressor gene promoter methylation in Wilms' tumour and colorectal cancer.
    Wagner KJ; Cooper WN; Grundy RG; Caldwell G; Jones C; Wadey RB; Morton D; Schofield PN; Reik W; Latif F; Maher ER
    Oncogene; 2002 Oct; 21(47):7277-82. PubMed ID: 12370819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms' tumour.
    Park S; Bernard A; Bove KE; Sens DA; Hazen-Martin DJ; Garvin AJ; Haber DA
    Nat Genet; 1993 Dec; 5(4):363-7. PubMed ID: 8298644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency and timing of loss of imprinting at 11p13 and 11p15 in Wilms' tumor development.
    Brown KW; Power F; Moore B; Charles AK; Malik KT
    Mol Cancer Res; 2008 Jul; 6(7):1114-23. PubMed ID: 18644976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microdissecting the genetic events in nephrogenic rests and Wilms' tumor development.
    Charles AK; Brown KW; Berry PJ
    Am J Pathol; 1998 Sep; 153(3):991-1000. PubMed ID: 9736048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of native WT1 protein from frozen human kidney and Wilms' tumors.
    Iben S; Royer-Pokora B
    Oncogene; 1999 Apr; 18(15):2533-6. PubMed ID: 10229205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identical genetic changes in different histologic components of Wilms' tumors.
    Zhuang Z; Merino MJ; Vortmeyer AO; Bryant B; Lash AE; Wang C; Deavers MT; Shelton WF; Kapur S; Chandra RS
    J Natl Cancer Inst; 1997 Aug; 89(15):1148-52. PubMed ID: 9262253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wilms' tumor gene 1: lessons from the interface between kidney development and cancer.
    Torban E; Goodyer P
    Am J Physiol Renal Physiol; 2024 Jan; 326(1):F3-F19. PubMed ID: 37916284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell types expressing the Wilms' tumour gene (WT1) in Wilms' tumours: implications for tumour histogenesis.
    Pritchard-Jones K; Fleming S
    Oncogene; 1991 Dec; 6(12):2211-20. PubMed ID: 1722569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of imprinting of insulin-like growth factor-II in Wilms' tumor commonly involves altered methylation but not mutations of CTCF or its binding site.
    Cui H; Niemitz EL; Ravenel JD; Onyango P; Brandenburg SA; Lobanenkov VV; Feinberg AP
    Cancer Res; 2001 Jul; 61(13):4947-50. PubMed ID: 11431321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A loss of insulin-like growth factor-2 imprinting is modulated by CCCTC-binding factor down-regulation at senescence in human epithelial cells.
    Fu VX; Schwarze SR; Kenowski ML; Leblanc S; Svaren J; Jarrard DF
    J Biol Chem; 2004 Dec; 279(50):52218-26. PubMed ID: 15471867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker.
    Yoon B; Herman H; Hu B; Park YJ; Lindroth A; Bell A; West AG; Chang Y; Stablewski A; Piel JC; Loukinov DI; Lobanenkov VV; Soloway PD
    Mol Cell Biol; 2005 Dec; 25(24):11184-90. PubMed ID: 16314537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The expression pattern of Wilms' tumour gene (WT1) product in normal tissues and paediatric renal tumours.
    Ramani P; Cowell JK
    J Pathol; 1996 Jun; 179(2):162-8. PubMed ID: 8758208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A developmental context for multiple genetic alterations in Wilms' tumor.
    Feinberg AP
    J Cell Sci Suppl; 1994; 18():7-12. PubMed ID: 7883796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wilms' tumour: reconciling genetics and biology.
    Van Heyningen V; Hastie ND
    Trends Genet; 1992 Jan; 8(1):16-21. PubMed ID: 1369730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms' tumours.
    Satoh Y; Nakadate H; Nakagawachi T; Higashimoto K; Joh K; Masaki Z; Uozumi J; Kaneko Y; Mukai T; Soejima H
    Br J Cancer; 2006 Aug; 95(4):541-7. PubMed ID: 16909133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms' tumour.
    Sparago A; Russo S; Cerrato F; Ferraiuolo S; Castorina P; Selicorni A; Schwienbacher C; Negrini M; Ferrero GB; Silengo MC; Anichini C; Larizza L; Riccio A
    Hum Mol Genet; 2007 Feb; 16(3):254-64. PubMed ID: 17158821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.