These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 17210917)
1. A structural rationale for stalling of a replicative DNA polymerase at the most common oxidative thymine lesion, thymine glycol. Aller P; Rould MA; Hogg M; Wallace SS; Doublié S Proc Natl Acad Sci U S A; 2007 Jan; 104(3):814-8. PubMed ID: 17210917 [TBL] [Abstract][Full Text] [Related]
2. A crystallographic study of the role of sequence context in thymine glycol bypass by a replicative DNA polymerase serendipitously sheds light on the exonuclease complex. Aller P; Duclos S; Wallace SS; Doublié S J Mol Biol; 2011 Sep; 412(1):22-34. PubMed ID: 21781974 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of a replicative DNA polymerase bound to the oxidized guanine lesion guanidinohydantoin. Aller P; Ye Y; Wallace SS; Burrows CJ; Doublié S Biochemistry; 2010 Mar; 49(11):2502-9. PubMed ID: 20166752 [TBL] [Abstract][Full Text] [Related]
4. Nucleotide insertion opposite a cis-syn thymine dimer by a replicative DNA polymerase from bacteriophage T7. Li Y; Dutta S; Doublié S; Bdour HM; Taylor JS; Ellenberger T Nat Struct Mol Biol; 2004 Aug; 11(8):784-90. PubMed ID: 15235589 [TBL] [Abstract][Full Text] [Related]
5. Structural basis of error-prone replication and stalling at a thymine base by human DNA polymerase iota. Kirouac KN; Ling H EMBO J; 2009 Jun; 28(11):1644-54. PubMed ID: 19440206 [TBL] [Abstract][Full Text] [Related]
6. Error-free replicative bypass of thymine glycol by the combined action of DNA polymerases kappa and zeta in human cells. Yoon JH; Bhatia G; Prakash S; Prakash L Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14116-21. PubMed ID: 20660785 [TBL] [Abstract][Full Text] [Related]
7. Human DNA polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides. Fischhaber PL; Gerlach VL; Feaver WJ; Hatahet Z; Wallace SS; Friedberg EC J Biol Chem; 2002 Oct; 277(40):37604-11. PubMed ID: 12145297 [TBL] [Abstract][Full Text] [Related]
8. Translesion synthesis by human DNA polymerase eta across thymine glycol lesions. Kusumoto R; Masutani C; Iwai S; Hanaoka F Biochemistry; 2002 May; 41(19):6090-9. PubMed ID: 11994004 [TBL] [Abstract][Full Text] [Related]
9. A role for DNA polymerase θ in promoting replication through oxidative DNA lesion, thymine glycol, in human cells. Yoon JH; Roy Choudhury J; Park J; Prakash S; Prakash L J Biol Chem; 2014 May; 289(19):13177-85. PubMed ID: 24648516 [TBL] [Abstract][Full Text] [Related]
10. Plant organellar DNA polymerases bypass thymine glycol using two conserved lysine residues. Baruch-Torres N; Yamamoto J; Juárez-Quintero V; Iwai S; Brieba LG Biochem J; 2020 Mar; 477(5):1049-1059. PubMed ID: 32108856 [TBL] [Abstract][Full Text] [Related]
11. Template length, sequence context, and 3'-5' exonuclease activity modulate replicative bypass of thymine glycol lesions in vitro. Clark JM; Beardsley GP Biochemistry; 1989 Jan; 28(2):775-9. PubMed ID: 2713344 [TBL] [Abstract][Full Text] [Related]
12. Human mitochondrial DNA polymerase γ exhibits potential for bypass and mutagenesis at UV-induced cyclobutane thymine dimers. Kasiviswanathan R; Gustafson MA; Copeland WC; Meyer JN J Biol Chem; 2012 Mar; 287(12):9222-9. PubMed ID: 22194617 [TBL] [Abstract][Full Text] [Related]
13. Evading the proofreading machinery of a replicative DNA polymerase: induction of a mutation by an environmental carcinogen. Perlow RA; Broyde S J Mol Biol; 2001 Jun; 309(2):519-36. PubMed ID: 11371169 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics of a food carcinogen-DNA adduct in a replicative DNA polymerase suggest hindered nucleotide incorporation and extension. Zhang L; Shapiro R; Broyde S Chem Res Toxicol; 2005 Sep; 18(9):1347-63. PubMed ID: 16167826 [TBL] [Abstract][Full Text] [Related]
15. Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site. Hogg M; Wallace SS; Doublié S EMBO J; 2004 Apr; 23(7):1483-93. PubMed ID: 15057283 [TBL] [Abstract][Full Text] [Related]
16. Role of human DNA polymerase κ in extension opposite from a cis-syn thymine dimer. Vasquez-Del Carpio R; Silverstein TD; Lone S; Johnson RE; Prakash L; Prakash S; Aggarwal AK J Mol Biol; 2011 Apr; 408(2):252-61. PubMed ID: 21354175 [TBL] [Abstract][Full Text] [Related]
17. Translesion synthesis past guanine(C8)-thymine(N3) intrastrand cross-links catalyzed by selected A- and Y-family polymerases. Lee YA; Lee YC; Geacintov NE; Shafirovich V Mol Biosyst; 2016 May; 12(6):1892-900. PubMed ID: 27102383 [TBL] [Abstract][Full Text] [Related]
18. Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nair DT; Johnson RE; Prakash S; Prakash L; Aggarwal AK Nature; 2004 Jul; 430(6997):377-80. PubMed ID: 15254543 [TBL] [Abstract][Full Text] [Related]
19. Functional effects of cis-thymine glycol lesions on DNA synthesis in vitro. Clark JM; Beardsley GP Biochemistry; 1987 Aug; 26(17):5398-403. PubMed ID: 3676259 [TBL] [Abstract][Full Text] [Related]
20. Mutagenic Effects of a 2-Deoxyribonolactone-Thymine Glycol Tandem DNA Lesion in Human Cells. Naldiga S; Huang H; Greenberg MM; Basu AK Biochemistry; 2020 Feb; 59(4):417-424. PubMed ID: 31860280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]