These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 17210917)

  • 21. Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5R-thymine glycol lesion and structure of the cis-(5R,6S) thymine glycol epimer in the 5'-GTgG-3' sequence: destabilization of two base pairs at the lesion site.
    Brown KL; Roginskaya M; Zou Y; Altamirano A; Basu AK; Stone MP
    Nucleic Acids Res; 2010 Jan; 38(2):428-40. PubMed ID: 19892827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct mechanisms of cis-syn thymine dimer bypass by Dpo4 and DNA polymerase eta.
    Johnson RE; Prakash L; Prakash S
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12359-64. PubMed ID: 16116089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen-bonding capability of a templating difluorotoluene nucleotide residue in an RB69 DNA polymerase ternary complex.
    Xia S; Konigsberg WH; Wang J
    J Am Chem Soc; 2011 Jul; 133(26):10003-5. PubMed ID: 21667997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thymidine glycol: the effect on DNA molecular structure and enzymatic processing.
    Dolinnaya NG; Kubareva EA; Romanova EA; Trikin RM; Oretskaya TS
    Biochimie; 2013 Feb; 95(2):134-47. PubMed ID: 23000318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta.
    Alt A; Lammens K; Chiocchini C; Lammens A; Pieck JC; Kuch D; Hopfner KP; Carell T
    Science; 2007 Nov; 318(5852):967-70. PubMed ID: 17991862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The eukaryotic replisome tolerates leading-strand base damage by replicase switching.
    Guilliam TA; Yeeles JT
    EMBO J; 2021 Mar; 40(5):e107037. PubMed ID: 33555053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of thymine glycol damage on DNA duplex energetics: Correlations with lesion-induced biochemical and structural consequences.
    Minetti CA; Remeta DP; Iden CR; Johnson F; Grollman AP; Breslauer KJ
    Biopolymers; 2015 Sep; 103(9):491-508. PubMed ID: 25991500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Guanine-thymine intrastrand cross-linked lesion containing oligonucleotides: from chemical synthesis to in vitro enzymatic replication.
    Bellon S; Gasparutto D; Saint-Pierre C; Cadet J
    Org Biomol Chem; 2006 Oct; 4(20):3831-7. PubMed ID: 17024291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replication of a cis-syn thymine dimer at atomic resolution.
    Ling H; Boudsocq F; Plosky BS; Woodgate R; Yang W
    Nature; 2003 Aug; 424(6952):1083-7. PubMed ID: 12904819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interconversion of the cis-5R,6S- and trans-5R,6R-thymine glycol lesions in duplex DNA.
    Brown KL; Adams T; Jasti VP; Basu AK; Stone MP
    J Am Chem Soc; 2008 Sep; 130(35):11701-10. PubMed ID: 18681438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation.
    Wu WJ; Su MI; Wu JL; Kumar S; Lim LH; Wang CW; Nelissen FH; Chen MC; Doreleijers JF; Wijmenga SS; Tsai MD
    J Am Chem Soc; 2014 Apr; 136(13):4927-37. PubMed ID: 24617852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations of the effects of ring-saturated thymine lesions on DNA structure.
    Miaskiewicz K; Miller J; Ornstein R; Osman R
    Biopolymers; 1995 Jan; 35(1):113-24. PubMed ID: 7696552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thymine glycol lesions terminate chain elongation by DNA polymerase I in vitro.
    Clark JM; Beardsley GP
    Nucleic Acids Res; 1986 Jan; 14(2):737-49. PubMed ID: 3511447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Replication across template T/U by human DNA polymerase-iota.
    Jain R; Nair DT; Johnson RE; Prakash L; Prakash S; Aggarwal AK
    Structure; 2009 Jul; 17(7):974-80. PubMed ID: 19604477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The miscoding potential of 5-hydroxycytosine arises due to template instability in the replicative polymerase active site.
    Zahn KE; Averill A; Wallace SS; DoubliƩ S
    Biochemistry; 2011 Nov; 50(47):10350-8. PubMed ID: 22026756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic basis for the differing response to an oxidative lesion by a replicative and a lesion bypass DNA polymerase from Sulfolobus solfataricus.
    Maxwell BA; Suo Z
    Biochemistry; 2012 Apr; 51(16):3485-96. PubMed ID: 22471521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass.
    Lone S; Townson SA; Uljon SN; Johnson RE; Brahma A; Nair DT; Prakash S; Prakash L; Aggarwal AK
    Mol Cell; 2007 Feb; 25(4):601-14. PubMed ID: 17317631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yeast DNA polymerase zeta (zeta) is essential for error-free replication past thymine glycol.
    Johnson RE; Yu SL; Prakash S; Prakash L
    Genes Dev; 2003 Jan; 17(1):77-87. PubMed ID: 12514101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Replication of DNA templates containing 5-formyluracil, a major oxidative lesion of thymine in DNA.
    Zhang QM; Sugiyama H; Miyabe I; Matsuda S; Saito I; Yonei S
    Nucleic Acids Res; 1997 Oct; 25(20):3969-73. PubMed ID: 9321644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence context effect on strand slippage in natural DNA primer-templates.
    Chi LM; Lam SL
    J Phys Chem B; 2012 Feb; 116(6):1999-2007. PubMed ID: 22304666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.