These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 17211085)

  • 1. Verifying DiffEXAFS measurements with differential X-ray diffraction.
    Ruffoni MP; Pettifer RF; Pascarelli S; Mathon O
    J Synchrotron Radiat; 2007 Jan; 14(Pt 1):169-72. PubMed ID: 17211085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing atomic displacements with thermal differential EXAFS.
    Ruffoni MP; Pettifer RF; Pascarelli S; Trapananti A; Mathon O
    J Synchrotron Radiat; 2007 Sep; 14(Pt 5):421-5. PubMed ID: 17717384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue.
    Bohndiek SE; Cook EJ; Arvanitis CD; Olivo A; Royle GJ; Clark AT; Prydderch ML; Turchetta R; Speller RD
    Phys Med Biol; 2008 Feb; 53(3):655-72. PubMed ID: 18199908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The measurement of differential EXAFS modulated by high pressure.
    Chu S; Zheng L; Zhou Y; Zhou A; Zhang J; Che R; Liu J; Hu T
    J Synchrotron Radiat; 2011 Sep; 18(Pt 5):728-32. PubMed ID: 21862852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study.
    Cook E; Fong R; Horrocks J; Wilkinson D; Speller R
    Appl Radiat Isot; 2007 Aug; 65(8):959-67. PubMed ID: 17512207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diamond thermal expansion measurement using transmitted X-ray back-diffraction.
    Giles C; Adriano C; Lubambo AF; Cusatis C; Mazzaro I; Hönnicke MG
    J Synchrotron Radiat; 2005 May; 12(Pt 3):349-53. PubMed ID: 15840921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angular calibration in energy dispersive X-Ray diffraction by using genetic algorithms.
    Brunetti A; Albertini VR; Bailo D
    J Xray Sci Technol; 2009; 17(3):253-64. PubMed ID: 19893216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New reactor dedicated to in operando studies of model catalysts by means of surface x-ray diffraction and grazing incidence small angle x-ray scattering.
    Saint-Lager MC; Bailly A; Dolle P; Baudoing-Savois R; Taunier P; Garaudée S; Cuccaro S; Douillet S; Geaymond O; Perroux G; Tissot O; Micha JS; Ulrich O; Rieutord F
    Rev Sci Instrum; 2007 Aug; 78(8):083902. PubMed ID: 17764330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise determination of elastic constants by high-resolution inelastic X-ray scattering.
    Fukui H; Katsura T; Kuribayashi T; Matsuzaki T; Yoneda A; Ito E; Kudoh Y; Tsutsui S; Baron AQ
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):618-23. PubMed ID: 18955769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction.
    Bergh M; Huldt G; Tîmneanu N; Maia FR; Hajdu J
    Q Rev Biophys; 2008; 41(3-4):181-204. PubMed ID: 19079804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proposed time-resolved X-ray scattering approach to track local and global conformational changes in membrane transport proteins.
    Andersson M; Vincent J; van der Spoel D; Davidsson J; Neutze R
    Structure; 2008 Jan; 16(1):21-8. PubMed ID: 18184580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental requirements for light-induced reactions in powders investigated by time-resolved X-ray diffraction.
    Davaasambuu J; Durand P; Techert S
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):483-9. PubMed ID: 15496736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image contrast in X-ray reflection interface microscopy: comparison of data with model calculations and simulations.
    Fenter P; Park C; Kohli V; Zhang Z
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):558-71. PubMed ID: 18955761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of new apertures for coherent X-ray experiments.
    Dufresne EM; Dierker SB; Yin Z; Berman L
    J Synchrotron Radiat; 2009 May; 16(Pt 3):358-67. PubMed ID: 19395799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-Ray induced radiation damage in taurine: a combined X-ray diffraction and Raman study.
    Beukes JA; Mo F; van Beek W
    Phys Chem Chem Phys; 2007 Sep; 9(33):4709-20. PubMed ID: 17700872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray diffraction computed tomography.
    Harding G; Kosanetzky J; Neitzel U
    Med Phys; 1987; 14(4):515-25. PubMed ID: 3626990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a pnCCD in X-ray diffraction: a three-dimensional X-ray detector.
    Leitenberger W; Hartmann R; Pietsch U; Andritschke R; Starke I; Strüder L
    J Synchrotron Radiat; 2008 Sep; 15(Pt 5):449-57. PubMed ID: 18728315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and implementation of a compact low-dose diffraction enhanced medical imaging system.
    Parham C; Zhong Z; Connor DM; Chapman LD; Pisano ED
    Acad Radiol; 2009 Aug; 16(8):911-7. PubMed ID: 19375952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring x-ray beam damage on lipid films by an integrated Brewster angle microscope/x-ray diffractometer.
    Danauskas SM; Ratajczak MK; Ishitsuka Y; Gebhardt J; Schultz D; Meron M; Lin B; Lee KY
    Rev Sci Instrum; 2007 Oct; 78(10):103705. PubMed ID: 17979426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-angle pump-probe studies of photoexcited nanoparticles.
    Plech A; Kotaidis V; Istomin K; Wulff M
    J Synchrotron Radiat; 2007 May; 14(Pt 3):288-94. PubMed ID: 17435305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.