These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 17211491)
1. Relative energies of binding for antibody-carbohydrate-antigen complexes computed from free-energy simulations. Pathiaseril A; Woods RJ J Am Chem Soc; 2000 Jan; 122(2):331-8. PubMed ID: 17211491 [TBL] [Abstract][Full Text] [Related]
2. CHARMM-GUI Free Energy Calculator for Absolute and Relative Ligand Solvation and Binding Free Energy Simulations. Kim S; Oshima H; Zhang H; Kern NR; Re S; Lee J; Roux B; Sugita Y; Jiang W; Im W J Chem Theory Comput; 2020 Nov; 16(11):7207-7218. PubMed ID: 33112150 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the binding energies of testosterone, 5alpha-dihydrotestosterone, androstenedione and dehydroepiandrosterone sulfate with an antitestosterone antibody. Nordman N; Valjakka J; Peräkylä M Proteins; 2003 Jan; 50(1):135-43. PubMed ID: 12471606 [TBL] [Abstract][Full Text] [Related]
4. Protein-Ligand Binding Free Energy Calculations with FEP. Wang L; Chambers J; Abel R Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905 [TBL] [Abstract][Full Text] [Related]
5. Can Free Energy Perturbation Simulations Coupled with Replica-Exchange Molecular Dynamics Study Ligands with Distributed Binding Sites? Lockhart C; Luo X; Olson A; Delfing BM; Laracuente XE; Foreman KW; Paige M; Kehn-Hall K; Klimov DK J Chem Inf Model; 2023 Aug; 63(15):4791-4802. PubMed ID: 37531558 [TBL] [Abstract][Full Text] [Related]
6. Host-Guest Relative Binding Affinities at Density-Functional Theory Level from Semiempirical Molecular Dynamics Simulations. Wang M; Mei Y; Ryde U J Chem Theory Comput; 2019 Apr; 15(4):2659-2671. PubMed ID: 30811192 [TBL] [Abstract][Full Text] [Related]
7. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody. Laitinen T; Kankare JA; Peräkylä M Proteins; 2004 Apr; 55(1):34-43. PubMed ID: 14997538 [TBL] [Abstract][Full Text] [Related]
8. Advancing Drug Discovery through Enhanced Free Energy Calculations. Abel R; Wang L; Harder ED; Berne BJ; Friesner RA Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954 [TBL] [Abstract][Full Text] [Related]
9. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model. Shivakumar D; Deng Y; Roux B J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601 [TBL] [Abstract][Full Text] [Related]
10. Theoretical study of the ligand-CYP2B4 complexes: effect of structure on binding free energies and heme spin state. Harris DL; Park JY; Gruenke L; Waskell L Proteins; 2004 Jun; 55(4):895-914. PubMed ID: 15146488 [TBL] [Abstract][Full Text] [Related]
11. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials. Ge X; Roux B J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411 [TBL] [Abstract][Full Text] [Related]
12. Calculation of protein-ligand binding free energy by using a polarizable potential. Jiao D; Golubkov PA; Darden TA; Ren P Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6290-5. PubMed ID: 18427113 [TBL] [Abstract][Full Text] [Related]
13. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Miyamoto S; Kollman PA Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190 [TBL] [Abstract][Full Text] [Related]
14. Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. Reddy MR; Erion MD J Am Chem Soc; 2001 Jul; 123(26):6246-52. PubMed ID: 11427047 [TBL] [Abstract][Full Text] [Related]
15. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method. van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204 [TBL] [Abstract][Full Text] [Related]
16. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821 [TBL] [Abstract][Full Text] [Related]
17. Accurate calculation of affinity changes to the close state of influenza A M2 transmembrane domain in response to subtle structural changes of adamantyl amines using free energy perturbation methods in different lipid bilayers. Georgiou K; Konstantinidi A; Hutterer J; Freudenberger K; Kolarov F; Lambrinidis G; Stylianakis I; Stampelou M; Gauglitz G; Kolocouris A Biochim Biophys Acta Biomembr; 2024 Feb; 1866(2):184258. PubMed ID: 37995846 [TBL] [Abstract][Full Text] [Related]
18. CL-FEP: An End-State Free Energy Perturbation Approach. Ruiz-Blanco YB; Sanchez-Garcia E J Chem Theory Comput; 2020 Mar; 16(3):1396-1410. PubMed ID: 32109052 [TBL] [Abstract][Full Text] [Related]
19. Single mutation induced H3N2 hemagglutinin antibody neutralization: a free energy perturbation study. Zhou R; Das P; Royyuru AK J Phys Chem B; 2008 Dec; 112(49):15813-20. PubMed ID: 19367871 [TBL] [Abstract][Full Text] [Related]
20. QligFEP: an automated workflow for small molecule free energy calculations in Q. Jespers W; Esguerra M; Åqvist J; Gutiérrez-de-Terán H J Cheminform; 2019 Apr; 11(1):26. PubMed ID: 30941533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]