These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 17211538)
1. Biogenic black crusts on buildings in unpolluted environments. Gaylarde CC; Ortega-Morales BO; Bartolo-Pérez P Curr Microbiol; 2007 Feb; 54(2):162-6. PubMed ID: 17211538 [TBL] [Abstract][Full Text] [Related]
2. Cyanobacteria cause black staining of the National Museum of the American Indian Building, Washington, DC, USA. Cappitelli F; Salvadori O; Albanese D; Villa F; Sorlini C Biofouling; 2012; 28(3):257-66. PubMed ID: 22435895 [TBL] [Abstract][Full Text] [Related]
3. Temporal variation in community composition, pigmentation, and F(v)/F(m) of desert cyanobacterial soil crusts. Bowker MA; Reed SC; Belnap J; Phillips SL Microb Ecol; 2002 Jan; 43(1):13-25. PubMed ID: 11984625 [TBL] [Abstract][Full Text] [Related]
4. Algal and cyanobacterial biofilms on calcareous historic buildings. Crispim CA; Gaylarde PM; Gaylarde CC Curr Microbiol; 2003 Feb; 46(2):79-82. PubMed ID: 12520359 [TBL] [Abstract][Full Text] [Related]
5. An analysis of the black crusts from the Seville Cathedral: a challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources. Ruffolo SA; Comite V; La Russa MF; Belfiore CM; Barca D; Bonazza A; Crisci GM; Pezzino A; Sabbioni C Sci Total Environ; 2015 Jan; 502():157-66. PubMed ID: 25260161 [TBL] [Abstract][Full Text] [Related]
6. The cauliflower-like black crusts on sandstones: A natural passive sampler to evaluate the surrounding environmental pollution. Morillas H; Maguregui M; García-Florentino C; Carrero JA; Salcedo I; Madariaga JM Environ Res; 2016 May; 147():218-32. PubMed ID: 26897060 [TBL] [Abstract][Full Text] [Related]
7. Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. Abed RM; Al Kharusi S; Schramm A; Robinson MD FEMS Microbiol Ecol; 2010 Jun; 72(3):418-28. PubMed ID: 20298501 [TBL] [Abstract][Full Text] [Related]
8. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Rossi F; Micheletti E; Bruno L; Adhikary SP; Albertano P; Philippis RD Biofouling; 2012; 28(2):215-24. PubMed ID: 22352355 [TBL] [Abstract][Full Text] [Related]
9. Black layers on historical architecture. Toniolo L; Zerbi CM; Bugini R Environ Sci Pollut Res Int; 2009 Mar; 16(2):218-26. PubMed ID: 18839233 [TBL] [Abstract][Full Text] [Related]
10. [Response of the artificial cyanobacterial crusts to low temperature and light stress and the micro-structure changes under laboratory conditions]. Rao BQ; Li H; Xiong Y; Lan SB; Li DH; Liu YD Huan Jing Ke Xue; 2012 Aug; 33(8):2793-803. PubMed ID: 23213907 [TBL] [Abstract][Full Text] [Related]
12. Photoinhibition of cyanobacteria and its application in cultural heritage conservation. Hsieh P; Pedersen JZ; Bruno L Photochem Photobiol; 2014; 90(3):533-43. PubMed ID: 24320697 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of black crust formation and soiling process on historical buildings from the Bilbao metropolitan area (north of Spain) using SEM-EDS and Raman microscopy. Calparsoro E; Maguregui M; Giakoumaki A; Morillas H; Madariaga JM Environ Sci Pollut Res Int; 2017 Apr; 24(10):9468-9480. PubMed ID: 28236200 [TBL] [Abstract][Full Text] [Related]
14. Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico. Ramirez M; Hernandez-Marine M; Novelo E; Roldan M Biofouling; 2010 May; 26(4):399-409. PubMed ID: 20182932 [TBL] [Abstract][Full Text] [Related]
15. Weathering of granitic gneiss: A geochemical and microbiological study in the polluted sub-tropical city of Rio de Janeiro. Gaylarde C; Baptista-Neto JA; Tabasco-Novelo C; Ortega-Morales O Sci Total Environ; 2018 Dec; 644():1641-1647. PubMed ID: 30743877 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive pigment identification in single cells from living phototrophic biofilms by confocal imaging spectrofluorometry. Roldán M; Thomas F; Castel S; Quesada A; Hernández-Mariné M Appl Environ Microbiol; 2004 Jun; 70(6):3745-50. PubMed ID: 15184183 [TBL] [Abstract][Full Text] [Related]
17. Rapid recovery of cyanobacterial pigments in desiccated biological soil crusts following addition of water. Abed RM; Polerecky L; Al-Habsi A; Oetjen J; Strous M; de Beer D PLoS One; 2014; 9(11):e112372. PubMed ID: 25375172 [TBL] [Abstract][Full Text] [Related]
18. Polyphasic detection of cyanobacteria in terrestrial biofilms. Gaylarde C; Gaylarde P; Copp J; Neilan B Biofouling; 2004 Apr; 20(2):71-9. PubMed ID: 15203960 [TBL] [Abstract][Full Text] [Related]
19. Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Garcia-Pichel F; Sherry ND; Castenholz RW Photochem Photobiol; 1992 Jul; 56(1):17-23. PubMed ID: 1508978 [TBL] [Abstract][Full Text] [Related]
20. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures. Vázquez-Nion D; Rodríguez-Castro J; López-Rodríguez MC; Fernández-Silva I; Prieto B Biofouling; 2016 Jul; 32(6):657-69. PubMed ID: 27192622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]