BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17211550)

  • 1. Looking for organization patterns of highly expressed genes: purine-pyrimidine composition of precursor mRNAs.
    Paz A; Mester D; Nevo E; Korol A
    J Mol Evol; 2007 Feb; 64(2):248-60. PubMed ID: 17211550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive role of increased frequency of polypurine tracts in mRNA sequences of thermophilic prokaryotes.
    Paz A; Mester D; Baca I; Nevo E; Korol A
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2951-6. PubMed ID: 14973185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mutational analysis of the polypyrimidine tract of introns. Effects of sequence differences in pyrimidine tracts on splicing.
    Roscigno RF; Weiner M; Garcia-Blanco MA
    J Biol Chem; 1993 May; 268(15):11222-9. PubMed ID: 8496178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulated splicing of an alternative exon of beta-tropomyosin pre-mRNAs in myogenic cells depends on the strength of pyrimidine-rich intronic enhancer elements.
    Pret AM; Balvay L; Fiszman MY
    DNA Cell Biol; 1999 Sep; 18(9):671-83. PubMed ID: 10492398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial-encoded membrane protein transcripts are pyrimidine-rich while soluble protein transcripts and ribosomal RNA are purine-rich.
    Bradshaw PC; Rathi A; Samuels DC
    BMC Genomics; 2005 Sep; 6():136. PubMed ID: 16185363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of novel exon recognition elements from a pool of random sequences.
    Tian H; Kole R
    Mol Cell Biol; 1995 Nov; 15(11):6291-8. PubMed ID: 7565782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into human pre-mRNA splicing of human ultra-short introns: potential unusual mechanism identifies G-rich introns.
    Sasaki-Haraguchi N; Shimada MK; Taniguchi I; Ohno M; Mayeda A
    Biochem Biophys Res Commun; 2012 Jun; 423(2):289-94. PubMed ID: 22640740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide sequence composition adjacent to intronic splice sites improves splicing efficiency via its effect on pre-mRNA local folding in fungi.
    Zafrir Z; Tuller T
    RNA; 2015 Oct; 21(10):1704-18. PubMed ID: 26246046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of purine-rich exonic splicing enhancers in nuclear retention of pre-mRNAs.
    Taniguchi I; Masuyama K; Ohno M
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13684-9. PubMed ID: 17699631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses.
    Reddy AS; Shad Ali G
    Wiley Interdiscip Rev RNA; 2011; 2(6):875-89. PubMed ID: 21766458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of the N-terminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing.
    Shaw SD; Chakrabarti S; Ghosh G; Krainer AR
    PLoS One; 2007 Sep; 2(9):e854. PubMed ID: 17786225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an intronic splicing regulatory element involved in auto-regulation of alternative splicing of SCL33 pre-mRNA.
    Thomas J; Palusa SG; Prasad KV; Ali GS; Surabhi GK; Ben-Hur A; Abdel-Ghany SE; Reddy AS
    Plant J; 2012 Dec; 72(6):935-46. PubMed ID: 22913769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers.
    Graveley BR; Hertel KJ; Maniatis T
    EMBO J; 1998 Nov; 17(22):6747-56. PubMed ID: 9822617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an essential non-Watson-Crick interaction between the first and last nucleotides of a nuclear pre-mRNA intron.
    Parker R; Siliciano PG
    Nature; 1993 Feb; 361(6413):660-2. PubMed ID: 8437627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bias of purine stretches in sequenced chromosomes.
    Ussery D; Soumpasis DM; Brunak S; Staerfeldt HH; Worning P; Krogh A
    Comput Chem; 2002 Jul; 26(5):531-41. PubMed ID: 12144181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRACTS: A program to map oligopurine.oligopyrimidine and other binary DNA tracts.
    Gal M; Katz T; Ovadia A; Yagil G
    Nucleic Acids Res; 2003 Jul; 31(13):3682-5. PubMed ID: 12824393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex expression pattern of RPGR reveals a role for purine-rich exonic splicing enhancers.
    Hong DH; Li T
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3373-82. PubMed ID: 12407146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional group substitutions of the branchpoint adenosine in a nuclear pre-mRNA and a group II intron.
    Gaur RK; McLaughlin LW; Green MR
    RNA; 1997 Aug; 3(8):861-9. PubMed ID: 9257645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved putative signals in 3' intron junctions in rodents.
    Nussinov R
    J Biomol Struct Dyn; 1987 Jun; 4(6):1051-64. PubMed ID: 3270535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart.
    Ashiya M; Grabowski PJ
    RNA; 1997 Sep; 3(9):996-1015. PubMed ID: 9292499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.