These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 17211581)

  • 1. Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization.
    Sugita C; Ogata K; Shikata M; Jikuya H; Takano J; Furumichi M; Kanehisa M; Omata T; Sugiura M; Sugita M
    Photosynth Res; 2007; 93(1-3):55-67. PubMed ID: 17211581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1.
    Nakamura Y; Kaneko T; Sato S; Ikeuchi M; Katoh H; Sasamoto S; Watanabe A; Iriguchi M; Kawashima K; Kimura T; Kishida Y; Kiyokawa C; Kohara M; Matsumoto M; Matsuno A; Nakazaki N; Shimpo S; Sugimoto M; Takeuchi C; Yamada M; Tabata S
    DNA Res; 2002 Aug; 9(4):123-30. PubMed ID: 12240834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a high-frequency in vivo transposon mutagenesis system for Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942.
    Watabe K; Mimuro M; Tsuchiya T
    Plant Cell Physiol; 2014 Nov; 55(11):2017-26. PubMed ID: 25231960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120.
    Kaneko T; Nakamura Y; Wolk CP; Kuritz T; Sasamoto S; Watanabe A; Iriguchi M; Ishikawa A; Kawashima K; Kimura T; Kishida Y; Kohara M; Matsumoto M; Matsuno A; Muraki A; Nakazaki N; Shimpo S; Sugimoto M; Takazawa M; Yamada M; Yasuda M; Tabata S
    DNA Res; 2001 Oct; 8(5):205-13; 227-53. PubMed ID: 11759840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the GlgX protein in glycogen metabolism of the cyanobacterium, Synechococcus elongatus PCC 7942.
    Suzuki E; Umeda K; Nihei S; Moriya K; Ohkawa H; Fujiwara S; Tsuzuki M; Nakamura Y
    Biochim Biophys Acta; 2007 May; 1770(5):763-73. PubMed ID: 17321685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complete sequence and functional analysis of pANL, the large plasmid of the unicellular freshwater cyanobacterium Synechococcus elongatus PCC 7942.
    Chen Y; Holtman CK; Magnuson RD; Youderian PA; Golden SS
    Plasmid; 2008 May; 59(3):176-92. PubMed ID: 18353436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Genomics of Synechococcus elongatus Explains the Phenotypic Diversity of the Strains.
    Adomako M; Ernst D; Simkovsky R; Chao YY; Wang J; Fang M; Bouchier C; Lopez-Igual R; Mazel D; Gugger M; Golden SS
    mBio; 2022 Jun; 13(3):e0086222. PubMed ID: 35475644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids.
    Nakamura Y; Kaneko T; Sato S; Mimuro M; Miyashita H; Tsuchiya T; Sasamoto S; Watanabe A; Kawashima K; Kishida Y; Kiyokawa C; Kohara M; Matsumoto M; Matsuno A; Nakazaki N; Shimpo S; Takeuchi C; Yamada M; Tabata S
    DNA Res; 2003 Aug; 10(4):137-45. PubMed ID: 14621292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ParA-like protein influences the distribution of multi-copy chromosomes in cyanobacterium Synechococcus elongatus PCC 7942.
    Watanabe S; Noda A; Ohbayashi R; Uchioke K; Kurihara A; Nakatake S; Morioka S; Kanesaki Y; Chibazakura T; Yoshikawa H
    Microbiology (Reading); 2018 Jan; 164(1):45-56. PubMed ID: 29165230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of carbon metabolism in Synechococcus elongatus PCC 7942 by cyanophage-derived sigma factors for bioproduction improvement.
    Sawa N; Tatsuke T; Ogawa A; Hirokawa Y; Osanai T; Hanai T
    J Biosci Bioeng; 2019 Feb; 127(2):256-264. PubMed ID: 30150148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India.
    Jaiswal D; Sengupta A; Sohoni S; Sengupta S; Phadnavis AG; Pakrasi HB; Wangikar PP
    Sci Rep; 2018 Nov; 8(1):16632. PubMed ID: 30413737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Natural Competence into the Fast-Growing Cyanobacterium
    Wendt KE; Walker P; Sengupta A; Ungerer J; Pakrasi HB
    Appl Environ Microbiol; 2022 Jan; 88(1):e0188221. PubMed ID: 34705549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of the phycobilisome rod linker genes from the cyanobacterium Synechococcus sp. PCC 6301 and their inactivation in Synechococcus sp. PCC 7942.
    Bhalerao RP; Lind LK; Persson CE; Gustafsson P
    Mol Gen Genet; 1993 Feb; 237(1-2):89-96. PubMed ID: 8455571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal organization of chromosome duplication and segregation in the cyanobacterium Synechococcus elongatus PCC 7942.
    Chen AH; Afonso B; Silver PA; Savage DF
    PLoS One; 2012; 7(10):e47837. PubMed ID: 23112856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of a group 2 sigma factor, RPOD3, by high light and the underlying mechanism in Synechococcus elongatus PCC 7942.
    Seki A; Hanaoka M; Akimoto Y; Masuda S; Iwasaki H; Tanaka K
    J Biol Chem; 2007 Dec; 282(51):36887-94. PubMed ID: 17977831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942.
    Delaye L; González-Domenech CM; Garcillán-Barcia MP; Peretó J; de la Cruz F; Moya A
    BMC Genomics; 2011 Jan; 12():25. PubMed ID: 21226929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The essential gene set of a photosynthetic organism.
    Rubin BE; Wetmore KM; Price MN; Diamond S; Shultzaberger RK; Lowe LC; Curtin G; Arkin AP; Deutschbauer A; Golden SS
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):E6634-43. PubMed ID: 26508635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942.
    Kobayashi I; Watanabe S; Kanesaki Y; Shimada T; Yoshikawa H; Tanaka K
    Mol Microbiol; 2017 Apr; 104(2):260-277. PubMed ID: 28106321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942.
    Eriksson MJ; Clarke AK
    J Bacteriol; 1996 Aug; 178(16):4839-46. PubMed ID: 8759846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of two two-component signal transduction mutants with enhanced sucrose biosynthesis in Synechococcus elongatus PCC 7942.
    Qiao C; Zhang M; Luo Q; Lu X
    J Basic Microbiol; 2019 May; 59(5):465-476. PubMed ID: 30802333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.