BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 17211600)

  • 21. Phorbol ester stimulates catecholamine synthesis in isolated bovine adrenal medullary cells.
    Houchi H; Nakanishi A; Uddin MM; Ohuchi T; Oka M
    FEBS Lett; 1985 Sep; 188(2):205-8. PubMed ID: 2993023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation of activation of Ca2+/calmodulin-dependent protein kinase II with catecholamine secretion and tyrosine hydroxylase activation in cultured bovine adrenal medullary cells.
    Tsutsui M; Yanagihara N; Miyamoto E; Kuroiwa A; Izumi F
    Mol Pharmacol; 1994 Dec; 46(6):1041-7. PubMed ID: 7808423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leptin stimulates catecholamine synthesis in a PKC-dependent manner in cultured porcine adrenal medullary chromaffin cells.
    Takekoshi K; Ishii K; Nanmoku T; Shibuya S; Kawakami Y; Isobe K; Nakai T
    Endocrinology; 2001 Nov; 142(11):4861-71. PubMed ID: 11606454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of milnacipran and fluvoxamine on hyperemotional behaviors and the loss of tryptophan hydroxylase-positive cells in olfactory bulbectomized rats.
    Saitoh A; Yamaguchi K; Tatsumi Y; Murasawa H; Nakatani A; Hirose N; Yamada M; Yamada M; Kamei J
    Psychopharmacology (Berl); 2007 May; 191(4):857-65. PubMed ID: 17318509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular pH and catecholamine synthesis in cultured bovine adrenal medullary cells: effect of extracellular Na+ removal.
    Yanagihara N; Yokota K; Wada A; Izumi F
    J Neurochem; 1987 Dec; 49(6):1740-6. PubMed ID: 2890712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholinergic receptor-mediated phosphorylation and activation of tyrosine hydroxylase in cultured bovine adrenal chromaffin cells.
    Pocotte SL; Holz RW; Ueda T
    J Neurochem; 1986 Feb; 46(2):610-22. PubMed ID: 2867129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of catecholamine synthesis by proadrenomedullin N-terminal 20 peptide in cultured bovine adrenal medullary cells.
    Niina H; Kobayashi H; Kitamura K; Katoh F; Eto T; Wada A
    Eur J Pharmacol; 1995 Nov; 286(1):95-7. PubMed ID: 8566156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca(2+) mobilization, tyrosine hydroxylase activity, and signaling mechanisms in cultured porcine adrenal medullary chromaffin cells: effects of leptin.
    Takekoshi K; Ishii K; Kawakami Y; Isobe K; Nanmoku T; Nakai T
    Endocrinology; 2001 Jan; 142(1):290-8. PubMed ID: 11145592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the Anti-tumor Effects of Selective Serotonin Reuptake Inhibitors as Well as Serotonin and Norepinephrine Reuptake Inhibitors in Human Hepatocellular Carcinoma Cells.
    Kuwahara J; Yamada T; Egashira N; Ueda M; Zukeyama N; Ushio S; Masuda S
    Biol Pharm Bull; 2015; 38(9):1410-4. PubMed ID: 26328498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurochemical and behavioural characterization of milnacipran, a serotonin and noradrenaline reuptake inhibitor in rats.
    Mochizuki D; Tsujita R; Yamada S; Kawasaki K; Otsuka Y; Hashimoto S; Hattori T; Kitamura Y; Miki N
    Psychopharmacology (Berl); 2002 Jul; 162(3):323-32. PubMed ID: 12122491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Angiotensin-II subtype 2 receptor agonist (CGP-42112) inhibits catecholamine biosynthesis in cultured porcine adrenal medullary chromaffin cells.
    Takekoshi K; Ishii K; Isobe K; Nanmoku T; Kawakami Y; Nakai T
    Biochem Biophys Res Commun; 2000 Jun; 272(2):544-50. PubMed ID: 10833449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the serotonin and noradrenaline reuptake inhibitor (SNRI) milnacipran on marble burying behavior in mice.
    Sugimoto Y; Tagawa N; Kobayashi Y; Hotta Y; Yamada J
    Biol Pharm Bull; 2007 Dec; 30(12):2399-401. PubMed ID: 18057733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. cis-unsaturated fatty acids stimulate catecholamine secretion, tyrosine hydroxylase and protein kinase C in adrenal medullary cells.
    Koda Y; Wada A; Yanagihara N; Uezono Y; Izumi F
    Neuroscience; 1989; 29(2):495-502. PubMed ID: 2566957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Angiotensin II promotes the phosphorylation of cyclic AMP-responsive element binding protein (CREB) at Ser133 through an ERK1/2-dependent mechanism.
    Cammarota M; Bevilaqua LR; Dunkley PR; Rostas JA
    J Neurochem; 2001 Dec; 79(6):1122-8. PubMed ID: 11752053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of chronic treatment with milnacipran on sleep architecture in rats compared with paroxetine and imipramine.
    Gervasoni D; Panconi E; Henninot V; Boissard R; Barbagli B; Fort P; Luppi PH
    Pharmacol Biochem Behav; 2002 Oct; 73(3):557-63. PubMed ID: 12151030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potentiation by apamin of histamine-stimulated catecholamine biosynthesis and tyrosine hydroxylase phosphorylation in cultured bovine adrenal chromaffin cells.
    Kitamura K; Houchi H; Yoshizumi M; Matsumoto K; Oka M
    Tokushima J Exp Med; 1996 Jun; 43(1-2):17-23. PubMed ID: 8885685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histamine activates tyrosine hydroxylase in bovine adrenal chromaffin cells through a pathway that involves ERK1/2 but not p38 or JNK.
    Cammarota M; Bevilaqua LR; Rostas JA; Dunkley PR
    J Neurochem; 2003 Feb; 84(3):453-8. PubMed ID: 12558965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lithium chloride stimulates catecholamine synthesis and secretion in cultured bovine adrenal medullary cells.
    Terao T; Yanagihara N; Abe K; Izumi F
    Biol Psychiatry; 1992 May; 31(10):1038-49. PubMed ID: 1354987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Pharmacokinetics and drug interactions of antidepressive agents].
    Sawada Y; Ohtani H
    Nihon Rinsho; 2001 Aug; 59(8):1539-45. PubMed ID: 11519155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of p44/42 activation in tributyltin-induced inhibition of human natural killer cells: effects of MEK inhibitors.
    Abraha AB; Whalen MM
    J Appl Toxicol; 2009 Mar; 29(2):165-73. PubMed ID: 18989867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.