These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17211801)

  • 1. Relating environmental variation to selection on reaction norms: an experimental test.
    Kingsolver JG; Massie KR; Shlichta JG; Smith MH; Ragland GJ; Gomulkiewicz R
    Am Nat; 2007 Feb; 169(2):163-74. PubMed ID: 17211801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter- and intrapopulation variation in thermal reaction norms for growth rate: evolution of latitudinal compensation in ectotherms with a genetic constraint.
    Yamahira K; Kawajiri M; Takeshi K; Irie T
    Evolution; 2007 Jul; 61(7):1577-89. PubMed ID: 17598741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeding, growth, and the thermal environment of cabbage white caterpillars, Pieris rapae L.
    Kingsolver JG
    Physiol Biochem Zool; 2000; 73(5):621-8. PubMed ID: 11073798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expected relative fitness and the adaptive topography of fluctuating selection.
    Lande R
    Evolution; 2007 Aug; 61(8):1835-46. PubMed ID: 17683427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate.
    Shama LN; Campero-Paz M; Wegner KM; DE Block M; Stoks R
    Mol Ecol; 2011 Jul; 20(14):2929-41. PubMed ID: 21689189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in continuous reaction norms: quantifying directions of biological interest.
    Izem R; Kingsolver JG
    Am Nat; 2005 Aug; 166(2):277-89. PubMed ID: 16032579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature-size rule.
    Kingsolver JG; Massie KR; Ragland GJ; Smith MH
    J Evol Biol; 2007 May; 20(3):892-900. PubMed ID: 17465900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of phenotypic plasticity in spatially structured environments: implications of intraspecific competition, plasticity costs and environmental characteristics.
    Ernande B; Dieckmann U
    J Evol Biol; 2004 May; 17(3):613-28. PubMed ID: 15149404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural selection and genetic variation for reproductive reaction norms in a wild bird population.
    Brommer JE; Merilä J; Sheldon BC; Gustafsson L
    Evolution; 2005 Jun; 59(6):1362-71. PubMed ID: 16050111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological and developmental context of natural selection: maternal effects and thermally induced plasticity in the frog Bombina orientalis.
    Kaplan RH; Phillips PC
    Evolution; 2006 Jan; 60(1):142-56. PubMed ID: 16568639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution in a constant environment: thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta.
    Kingsolver JG; Ragland GJ; Diamond SE
    Evolution; 2009 Feb; 63(2):537-41. PubMed ID: 19154355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive topography of fluctuating selection in a Mendelian population.
    Lande R
    J Evol Biol; 2008 Jul; 21(4):1096-105. PubMed ID: 18422529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.
    Lande R
    J Evol Biol; 2009 Jul; 22(7):1435-46. PubMed ID: 19467134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-induced maternal effects and environmental predictability.
    Burgess SC; Marshall DJ
    J Exp Biol; 2011 Jul; 214(Pt 14):2329-36. PubMed ID: 21697424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuating selection and the maintenance of individual and sex-specific diet specialization in free-living oystercatchers.
    van de Pol M; Brouwer L; Ens BJ; Oosterbeek K; Tinbergen JM
    Evolution; 2010 Mar; 64(3):836-51. PubMed ID: 19804401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation.
    Garcia de Leaniz C; Fleming IA; Einum S; Verspoor E; Jordan WC; Consuegra S; Aubin-Horth N; Lajus D; Letcher BH; Youngson AF; Webb JH; Vøllestad LA; Villanueva B; Ferguson A; Quinn TP
    Biol Rev Camb Philos Soc; 2007 May; 82(2):173-211. PubMed ID: 17437557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of discrete phenotypes from continuous norms of reaction.
    Chevin LM; Lande R
    Am Nat; 2013 Jul; 182(1):13-27. PubMed ID: 23778223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of seasonal timing on thermal ecology and thermal reaction norm evolution in Wyeomyia smithii.
    Ragland GJ; Kingsolver JG
    J Evol Biol; 2007 Nov; 20(6):2144-53. PubMed ID: 17903189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental test of the effects of resources and sex ratio on maternal fitness and phenotypic selection in gynodioecious Fragaria virginiana.
    Case AL; Ashman TL
    Evolution; 2007 Aug; 61(8):1900-11. PubMed ID: 17683432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The temperature-size rule in ectotherms: simple evolutionary explanations may not be general.
    Angilletta MJ; Dunham AE
    Am Nat; 2003 Sep; 162(3):332-42. PubMed ID: 12970841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.