BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 17211802)

  • 1. Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature.
    Loeschcke V; Hoffmann AA
    Am Nat; 2007 Feb; 169(2):175-83. PubMed ID: 17211802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster.
    Norry FM; Scannapieco AC; Sambucetti P; Bertoli CI; Loeschcke V
    Mol Ecol; 2008 Oct; 17(20):4570-81. PubMed ID: 18986501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.
    Milton CC; Partridge L
    J Insect Physiol; 2008 Jan; 54(1):32-40. PubMed ID: 17884085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia.
    Sgrò CM; Overgaard J; Kristensen TN; Mitchell KA; Cockerell FE; Hoffmann AA
    J Evol Biol; 2010 Nov; 23(11):2484-93. PubMed ID: 20874849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid thermal adaptation during field temperature variations in Drosophila melanogaster.
    Overgaard J; Sørensen JG
    Cryobiology; 2008 Apr; 56(2):159-62. PubMed ID: 18295194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-eclosion decline in 'knock-down' thermal resistance and reduced effect of heat hardening in Drosophila melanogaster.
    Pappas C; Hyde D; Bowler K; Loeschcke V; Sørensen JG
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):355-9. PubMed ID: 17208027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexity of the cold acclimation response in Drosophila melanogaster.
    Rako L; Hoffmann AA
    J Insect Physiol; 2006 Jan; 52(1):94-104. PubMed ID: 16257412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life history consequences of temperature transients in Drosophila melanogaster.
    Dillon ME; Cahn LR; Huey RB
    J Exp Biol; 2007 Aug; 210(Pt 16):2897-904. PubMed ID: 17690238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.
    Overgaard J; Tomcala A; Sørensen JG; Holmstrup M; Krogh PH; Simek P; Kostál V
    J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking inbreeding effects in captive populations with fitness in the wild: release of replicated Drosophila melanogaster lines under different temperatures.
    Kristensen TN; Loeschcke V; Hoffmann AA
    Conserv Biol; 2008 Feb; 22(1):189-99. PubMed ID: 18254864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress-induced plastic responses in Drosophila simulans following exposure to combinations of temperature and humidity levels.
    Bubliy OA; Kristensen TN; Loeschcke V
    J Exp Biol; 2013 Dec; 216(Pt 24):4601-7. PubMed ID: 24072792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations.
    David JR; Araripe LO; Chakir M; Legout H; Lemos B; Pétavy G; Rohmer C; Joly D; Moreteau B
    J Evol Biol; 2005 Jul; 18(4):838-46. PubMed ID: 16033555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness.
    Bozinovic F; Bastías DA; Boher F; Clavijo-Baquet S; Estay SA; Angilletta MJ
    Physiol Biochem Zool; 2011; 84(6):543-52. PubMed ID: 22030847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological climatic limits in Drosophila: patterns and implications.
    Hoffmann AA
    J Exp Biol; 2010 Mar; 213(6):870-80. PubMed ID: 20190112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density.
    Arias LN; Sambucetti P; Scannapieco AC; Loeschcke V; Norry FM
    J Exp Biol; 2012 Jul; 215(Pt 13):2220-5. PubMed ID: 22675182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of total net fitness in thermal lines: Drosophila subobscura likes it 'warm'.
    Santos M
    J Evol Biol; 2007 Nov; 20(6):2361-70. PubMed ID: 17956397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic selection between adult thorax and wing size in field released Drosophila melanogaster independent of thermal conditions.
    Hoffmann AA; Ratna E; Sgrò CM; Barton M; Blacket M; Hallas R; De Garis S; Weeks AR
    J Evol Biol; 2007 Nov; 20(6):2219-27. PubMed ID: 17887974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Male sterility at high and low temperatures in Drosophila].
    David JR
    J Soc Biol; 2008; 202(2):113-7. PubMed ID: 18547508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.