These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17211881)

  • 1. Combination of automated high throughput platforms, flow cytometry, and hierarchical clustering to detect cell state.
    Kitsos CM; Bhamidipati P; Melnikova I; Cash EP; McNulty C; Furman J; Cima MJ; Levinson D
    Cytometry A; 2007 Jan; 71(1):16-27. PubMed ID: 17211881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polychromatic flow cytometry: a rapid method for the reduction and analysis of complex multiparameter data.
    Petrausch U; Haley D; Miller W; Floyd K; Urba WJ; Walker E
    Cytometry A; 2006 Dec; 69(12):1162-73. PubMed ID: 17089357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical clustering of flow cytometry data for the study of conventional central chondrosarcoma.
    Diaz-Romero J; Romeo S; Bovée JV; Hogendoorn PC; Heini PF; Mainil-Varlet P
    J Cell Physiol; 2010 Nov; 225(2):601-11. PubMed ID: 20506378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated gating of flow cytometry data via robust model-based clustering.
    Lo K; Brinkman RR; Gottardo R
    Cytometry A; 2008 Apr; 73(4):321-32. PubMed ID: 18307272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of hierarchical clustering methodologies for proteomic data mining.
    Meunier B; Dumas E; Piec I; Béchet D; Hébraud M; Hocquette JF
    J Proteome Res; 2007 Jan; 6(1):358-66. PubMed ID: 17203979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian clustering of flow cytometry data for the diagnosis of B-chronic lymphocytic leukemia.
    Lakoumentas J; Drakos J; Karakantza M; Nikiforidis GC; Sakellaropoulos GC
    J Biomed Inform; 2009 Apr; 42(2):251-61. PubMed ID: 19084613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential univariate gating approach to study the effects of erythropoietin in murine bone marrow.
    Achuthanandam R; Quinn J; Capocasale RJ; Bugelski PJ; Hrebien L; Kam M
    Cytometry A; 2008 Aug; 73(8):702-14. PubMed ID: 18496852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multidimensional classification approach for the automated analysis of flow cytometry data.
    Pedreira CE; Costa ES; Arroyo ME; Almeida J; Orfao A
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1155-62. PubMed ID: 18334408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of organ-specific T cell populations by analysis of multiparameter flow cytometry data using DNA-chip analysis software.
    Hofmann M; Zerwes HG
    Cytometry A; 2006 Jun; 69(6):533-40. PubMed ID: 16646049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data.
    Lugli E; Pinti M; Nasi M; Troiano L; Ferraresi R; Mussi C; Salvioli G; Patsekin V; Robinson JP; Durante C; Cocchi M; Cossarizza A
    Cytometry A; 2007 May; 71(5):334-44. PubMed ID: 17352421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerosol time-of-flight mass spectrometry data analysis: a benchmark of clustering algorithms.
    Rebotier TP; Prather KA
    Anal Chim Acta; 2007 Feb; 585(1):38-54. PubMed ID: 17386645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data.
    Tseng GC
    Bioinformatics; 2007 Sep; 23(17):2247-55. PubMed ID: 17597097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NIPALSTREE: a new hierarchical clustering approach for large compound libraries and its application to virtual screening.
    Böcker A; Schneider G; Teckentrup A
    J Chem Inf Model; 2006; 46(6):2220-9. PubMed ID: 17125166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications.
    Krutzik PO; Irish JM; Nolan GP; Perez OD
    Clin Immunol; 2004 Mar; 110(3):206-21. PubMed ID: 15047199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-based combinatorial antibody profiling: an integrated approach to cell characterization.
    Bruckner S; Wang L; Yuan R; Haaland P; Gaur A
    Methods Mol Biol; 2011; 699():97-118. PubMed ID: 21116981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytokine flow cytometry: multiparametric approach to immune function analysis.
    Ghanekar SA; Maecker HT
    Cytotherapy; 2003; 5(1):1-6. PubMed ID: 12745590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual MRI: merging information visualization and non-parametric clustering techniques for MRI dataset analysis.
    Castellani U; Cristani M; Combi C; Murino V; Sbarbati A; Marzola P
    Artif Intell Med; 2008 Nov; 44(3):183-99. PubMed ID: 18775655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of a Gibbs sampler method for model-based clustering of gene expression data.
    Joshi A; Van de Peer Y; Michoel T
    Bioinformatics; 2008 Jan; 24(2):176-83. PubMed ID: 18033794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering of change patterns using Fourier coefficients.
    Kim J; Kim H
    Bioinformatics; 2008 Jan; 24(2):184-91. PubMed ID: 18025003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixture modeling approach to flow cytometry data.
    Boedigheimer MJ; Ferbas J
    Cytometry A; 2008 May; 73(5):421-9. PubMed ID: 18383311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.