These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17212440)

  • 1. Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes.
    Dong L; Tao X; Zhang L; Zhang X; Nelson BJ
    Nano Lett; 2007 Jan; 7(1):58-63. PubMed ID: 17212440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotube fluidic junctions: internanotube attogram mass transport through walls.
    Dong L; Tao X; Hamdi M; Zhang L; Zhang X; Ferreira A; Nelson BJ
    Nano Lett; 2009 Jan; 9(1):210-4. PubMed ID: 19072302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric and mass transport of a carbon nanotube encapsulating a copper nano-rod studied by in-situ transmission electron microscopy.
    Kimura F; Asaka K; Nakahara H; Kokai F; Saito Y
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3907-9. PubMed ID: 20355388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise current-driven release of attogram quantities of copper iodide encapsulated in carbon nanotubes.
    Costa PM; Golberg D; Mitome M; Hampel S; Leonhardt A; Buchner B; Bando Y
    Nano Lett; 2008 Oct; 8(10):3120-5. PubMed ID: 18729411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-filled carbon nanotube based optical nanoantennas: bubbling, reshaping, and in situ characterization.
    Fan Z; Tao X; Cui X; Fan X; Zhang X; Dong L
    Nanoscale; 2012 Sep; 4(18):5673-9. PubMed ID: 22875447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Note: Resistance spot welding using a microgripper.
    Hwang G; Podrzaj P; Hashimoto H
    Rev Sci Instrum; 2013 Oct; 84(10):106105. PubMed ID: 24182178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.
    Jung JH; Hwang GB; Lee JE; Bae GN
    Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical length measurement method by direct imaging of carbon nanotubes.
    Bengio EA; Tsentalovich DE; Behabtu N; Kleinerman O; Kesselman E; Schmidt J; Talmon Y; Pasquali M
    ACS Appl Mater Interfaces; 2014 May; 6(9):6139-46. PubMed ID: 24773046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-aligned nanogaps on multilayer electrodes for fluidic and magnetic assembly of carbon nanotubes.
    Shim JS; Yun YH; Cho W; Shanov V; Schulz MJ; Ahn CH
    Langmuir; 2010 Jul; 26(14):11642-7. PubMed ID: 20553000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field-assisted deposition of nanowires on carbon nanotubes for nanoelectronics and sensor applications.
    Sivakumar K; Panchapakesan B
    J Nanosci Nanotechnol; 2005 Feb; 5(2):313-8. PubMed ID: 15853154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fabrication of carbon nanotube probes utilizing ultra-high vacuum transmission electron microscopy.
    Chin SC; Chang YC; Chang CS
    Nanotechnology; 2009 Jul; 20(28):285307. PubMed ID: 19546489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical and electrical properties of carbon nanotube/Cu nanocomposites by molecular-level mixing and controlled oxidation process.
    Lim BK; Mo CB; Nam DH; Hong SH
    J Nanosci Nanotechnol; 2010 Jan; 10(1):78-84. PubMed ID: 20352814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers.
    Xu G; Zhao J; Li S; Zhang X; Yong Z; Li Q
    Nanoscale; 2011 Oct; 3(10):4215-9. PubMed ID: 21879118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow-induced planar assembly of parallel carbon nanotubes and crossed nanotube junctions.
    Cao A; Talapatra S; Vajtai R; Ajayan PM
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1177-80. PubMed ID: 16108446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles.
    Wei X; Wang MS; Bando Y; Golberg D
    Sci Technol Adv Mater; 2011 Aug; 12(4):044605. PubMed ID: 27877413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity.
    Mohan R; Shanmugharaj AM; Sung Hun R
    J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):119-26. PubMed ID: 21061363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in inorganically filled carbon nanotubes: successes and challenges.
    Gautam UK; Costa PM; Bando Y; Fang X; Li L; Imura M; Golberg D
    Sci Technol Adv Mater; 2010 Oct; 11(5):054501. PubMed ID: 27877358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic action of gold and copper crystals in the growth of carbon nanotubes.
    Tyagi PK; Janowska I; Cretu O; Pham-Huu C; Banhart F
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3609-15. PubMed ID: 21776744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.