These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17212465)

  • 21. Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices.
    Vicarelli L; Heerema SJ; Dekker C; Zandbergen HW
    ACS Nano; 2015 Apr; 9(4):3428-35. PubMed ID: 25864552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.
    Kumar SB; Jalil MB; Tan SG; Liang G
    J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoelectric properties of graphene nanoribbons, junctions and superlattices.
    Chen Y; Jayasekera T; Calzolari A; Kim KW; Nardelli MB
    J Phys Condens Matter; 2010 Sep; 22(37):372202. PubMed ID: 21403189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges.
    Zhao J; Deng Q; Avdoshenko SM; Fu L; Eckert J; Rümmeli MH
    Proc Natl Acad Sci U S A; 2014 Nov; 111(44):15641-6. PubMed ID: 25331874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Safety considerations for graphene: lessons learnt from carbon nanotubes.
    Bussy C; Ali-Boucetta H; Kostarelos K
    Acc Chem Res; 2013 Mar; 46(3):692-701. PubMed ID: 23163827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electronic states of graphene nanoribbons and analytical solutions.
    Wakabayashi K; Sasaki KI; Nakanishi T; Enoki T
    Sci Technol Adv Mater; 2010 Oct; 11(5):054504. PubMed ID: 27877361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coherently controlled ballistic charge currents injected in single-walled carbon nanotubes and graphite.
    Newson RW; Ménard JM; Sames C; Betz M; van Driel HM
    Nano Lett; 2008 Jun; 8(6):1586-9. PubMed ID: 18479170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic response of zigzag nanoribbons under electric fields.
    Culchac FJ; Capaz RB; Costa AT; Latgé A
    J Phys Condens Matter; 2014 May; 26(21):216002. PubMed ID: 24806106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anisotropic protein diffusion on nanosurface.
    Liu Y; Song X; Yang Y; Li YQ; Zhao M; Mu Y; Li W
    Nanoscale; 2020 Feb; 12(8):5209-5216. PubMed ID: 32073019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism.
    Xu J; Cao Z; Zhang Y; Yuan Z; Lou Z; Xu X; Wang X
    Chemosphere; 2018 Mar; 195():351-364. PubMed ID: 29272803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic response of conductance peak structure in junction-confined graphene nanoribbons.
    Yamamoto M; Wakabayashi K
    Nanoscale; 2012 Feb; 4(4):1138-45. PubMed ID: 22080960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene and Graphene Analogs toward Optical, Electronic, Spintronic, Green-Chemical, Energy-Material, Sensing, and Medical Applications.
    Rezapour MR; Myung CW; Yun J; Ghassami A; Li N; Yu SU; Hajibabaei A; Park Y; Kim KS
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24393-24406. PubMed ID: 28678466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads.
    Zhou B; Chen X; Zhou B; Ding KH; Zhou G
    J Phys Condens Matter; 2011 Apr; 23(13):135304. PubMed ID: 21415476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The potential of perylene bisimide derivatives for the solubilization of carbon nanotubes and graphene.
    Backes C; Hauke F; Hirsch A
    Adv Mater; 2011 Jun; 23(22-23):2588-601. PubMed ID: 21484893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The bottom-up growth of edge specific graphene nanoribbons.
    Nevius MS; Wang F; Mathieu C; Barrett N; Sala A; Menteş TO; Locatelli A; Conrad EH
    Nano Lett; 2014 Nov; 14(11):6080-6. PubMed ID: 25254434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene, carbon nanotubes and nanoparticles in cell metabolism.
    Pumera M
    Curr Drug Metab; 2012 Mar; 13(3):251-6. PubMed ID: 22455551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fullerenes, carbon nanotubes, and graphene for molecular electronics.
    Pinzón JR; Villalta-Cerdas A; Echegoyen L
    Top Curr Chem; 2012; 312():127-74. PubMed ID: 21894583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.