These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 17212467)
1. Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. Wei G; Forrest SR Nano Lett; 2007 Jan; 7(1):218-22. PubMed ID: 17212467 [TBL] [Abstract][Full Text] [Related]
2. Effect of growth temperature and quantum structure on InAs/GaAs quantum dot solar cell. Park MH; Kim HS; Park SJ; Song JD; Kim SH; Lee YJ; Choi WJ; Park JH J Nanosci Nanotechnol; 2014 Apr; 14(4):2955-9. PubMed ID: 24734716 [TBL] [Abstract][Full Text] [Related]
3. Effective harvesting, detection, and conversion of IR radiation due to quantum dots with built-in charge. Sablon K; Sergeev A; Vagidov N; Antipov A; Little J; Mitin V Nanoscale Res Lett; 2011 Nov; 6(1):584. PubMed ID: 22060635 [TBL] [Abstract][Full Text] [Related]
4. An energy-harvesting scheme employing CuGaSe2 quantum dot-modified ZnO buffer layers for drastic conversion efficiency enhancement in inorganic-organic hybrid solar cells. Ho CR; Tsai ML; Jhuo HJ; Lien DH; Lin CA; Tsai SH; Wei TC; Huang KP; Chen SA; He JH Nanoscale; 2013 Jul; 5(14):6350-5. PubMed ID: 23455444 [TBL] [Abstract][Full Text] [Related]
5. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
6. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge. Sablon KA; Little JW; Mitin V; Sergeev A; Vagidov N; Reinhardt K Nano Lett; 2011 Jun; 11(6):2311-7. PubMed ID: 21545165 [TBL] [Abstract][Full Text] [Related]
7. Quantum junction solar cells. Tang J; Liu H; Zhitomirsky D; Hoogland S; Wang X; Furukawa M; Levina L; Sargent EH Nano Lett; 2012 Sep; 12(9):4889-94. PubMed ID: 22881834 [TBL] [Abstract][Full Text] [Related]
8. InP QDs modified GaAs/PEDOT:PSS hybrid solar cell with efficiency over 15. Wang J; Guo J; Liang J; Guo C; Mo Y; Liu P; Xie S; Wang W; Li G Nano Lett; 2024 Oct; 24(39):12111-12117. PubMed ID: 39303046 [TBL] [Abstract][Full Text] [Related]
9. InAs/GaAsSb quantum dot solar cells. Hatch S; Wu J; Sablon K; Lam P; Tang M; Jiang Q; Liu H Opt Express; 2014 May; 22 Suppl 3():A679-85. PubMed ID: 24922376 [TBL] [Abstract][Full Text] [Related]
10. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell. Wu Y; Yan X; Zhang X; Ren X Nanoscale Res Lett; 2018 Feb; 13(1):62. PubMed ID: 29476287 [TBL] [Abstract][Full Text] [Related]
11. High efficiency solar cells tailored using biomass-converted graded carbon quantum dots. Liu L; Yu X; Yi Z; Chi F; Wang H; Yuan Y; Li D; Xu K; Zhang X Nanoscale; 2019 Aug; 11(32):15083-15090. PubMed ID: 31380538 [TBL] [Abstract][Full Text] [Related]
12. Theory of plasmonic quantum-dot-based intermediate band solar cells. Foroutan S; Baghban H Appl Opt; 2016 May; 55(13):3405-12. PubMed ID: 27140348 [TBL] [Abstract][Full Text] [Related]
14. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers. Shaikh JS; Shaikh NS; Mali SS; Patil JV; Beknalkar SA; Patil AP; Tarwal NL; Kanjanaboos P; Hong CK; Patil PS ChemSusChem; 2019 Nov; 12(21):4724-4753. PubMed ID: 31347771 [TBL] [Abstract][Full Text] [Related]
15. Homojunction Perovskite Quantum Dot Solar Cells with over 1 µm-Thick Photoactive Layer. Zhang X; Huang H; Ling X; Sun J; Jiang X; Wang Y; Xue D; Huang L; Chi L; Yuan J; Ma W Adv Mater; 2022 Jan; 34(2):e2105977. PubMed ID: 34695259 [TBL] [Abstract][Full Text] [Related]
16. Influence of Geometrical Shape on the Characteristics of the Multiple InN/In Aouami AE; Pérez LM; Feddi K; El-Yadri M; Dujardin F; Suazo MJ; Laroze D; Courel M; Feddi EM Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067706 [TBL] [Abstract][Full Text] [Related]
17. Understanding charge transfer and recombination by interface engineering for improving the efficiency of PbS quantum dot solar cells. Ding C; Zhang Y; Liu F; Kitabatake Y; Hayase S; Toyoda T; Wang R; Yoshino K; Minemoto T; Shen Q Nanoscale Horiz; 2018 Jul; 3(4):417-429. PubMed ID: 32254129 [TBL] [Abstract][Full Text] [Related]
18. Highly Photoconductive InP Quantum Dots Films and Solar Cells. Crisp RW; Kirkwood N; Grimaldi G; Kinge S; Siebbeles LDA; Houtepen AJ ACS Appl Energy Mater; 2018 Nov; 1(11):6569-6576. PubMed ID: 30506040 [TBL] [Abstract][Full Text] [Related]
19. Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells. Kwak GY; Kim TG; Kim N; Shin JY; Kim KJ Nanotechnology; 2020 May; 31(19):195404. PubMed ID: 31986507 [TBL] [Abstract][Full Text] [Related]
20. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting. Krishnan C; Mercier T; Rahman T; Piana G; Brossard M; Yagafarov T; To A; Pollard ME; Shaw P; Bagnall DM; Hoex B; Boden SA; Lagoudakis PG; Charlton MDB Nanoscale; 2019 Oct; 11(40):18837-18844. PubMed ID: 31595913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]