These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 172125)

  • 1. Membrane potential and active transport in membrane vesicles from Escherichia coli.
    Schuldiner S; Kaback HR
    Biochemistry; 1975 Dec; 14(25):5451-61. PubMed ID: 172125
    [No Abstract]   [Full Text] [Related]  

  • 2. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR
    Symp Soc Exp Biol; 1973; 27():145-74. PubMed ID: 4594375
    [No Abstract]   [Full Text] [Related]  

  • 3. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.
    Lombardi FJ; Reeves JP; Short SA; Kaback HR
    Ann N Y Acad Sci; 1974 Feb; 227():312-27. PubMed ID: 4363926
    [No Abstract]   [Full Text] [Related]  

  • 4. Membrane potential and neutral amino acid transport in plasma membrane vesicles from Simian virus 40 transformed mouse fibroblasts.
    Lever JE
    Biochemistry; 1977 Sep; 16(19):4328-34. PubMed ID: 197993
    [No Abstract]   [Full Text] [Related]  

  • 5. Colicin V-treated Escherichia coli does not generate membrane potential.
    Yang CC; Konisky J
    J Bacteriol; 1984 May; 158(2):757-9. PubMed ID: 6373733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valinomycin can depolarize mitochondria in intact lymphocytes without increasing plasma membrane potassium fluxes.
    Felber SM; Brand MD
    FEBS Lett; 1982 Dec; 150(1):122-4. PubMed ID: 7160466
    [No Abstract]   [Full Text] [Related]  

  • 7. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport.
    Lombardi FJ; Reeves JP; Kaback HR
    J Biol Chem; 1973 May; 248(10):3551-65. PubMed ID: 4573982
    [No Abstract]   [Full Text] [Related]  

  • 8. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential.
    Hirata H; Altendorf K; Harold FM
    J Biol Chem; 1974 May; 249(9):2939-45. PubMed ID: 4133356
    [No Abstract]   [Full Text] [Related]  

  • 9. Substrate kinetic isotope effects in dehydrogenase coupled active transport in membrane vesicles of Escherichia coli.
    Kaczorowski GJ; Cheung YF; Walsh C
    Biochemistry; 1977 Jun; 16(12):2619-28. PubMed ID: 19035
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.
    Barnes EM; Kaback HR
    J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow.
    Kaczorowski GJ; Kaback HR
    Biochemistry; 1979 Aug; 18(17):3691-7. PubMed ID: 38836
    [No Abstract]   [Full Text] [Related]  

  • 12. [Non-dependence of the membrane potential of mitochondria on their energetic state].
    Skul'skiĭ IA; Glazunov VV
    Dokl Akad Nauk SSSR; 1981; 258(6):1496-8. PubMed ID: 6894897
    [No Abstract]   [Full Text] [Related]  

  • 13. Measurement of membrane potential of chromaffin granules by the accumulation of triphenylmethylphosphonium cation.
    Holz RW
    J Biol Chem; 1979 Jul; 254(14):6703-9. PubMed ID: 582174
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanisms of active transport in isolated membrane vesicles. 2. The coupling of reduced phenazine methosulfate to the concentrative uptake of beta-galactosides and amino acids.
    Konings WN; Barnes EM; Kaback HR
    J Biol Chem; 1971 Oct; 246(19):5857-61. PubMed ID: 4331061
    [No Abstract]   [Full Text] [Related]  

  • 15. The role of functional sulfhydryl groups in active transport in Escherichia coli membrane vesicles.
    Kaback HR; Patel L
    Biochemistry; 1978 May; 17(9):1640-6. PubMed ID: 350273
    [No Abstract]   [Full Text] [Related]  

  • 16. The use of K+ diffusion gradients to support transport by Escherichia coli membrane vesicles.
    Hirata H
    Methods Enzymol; 1979; 55():676-80. PubMed ID: 379504
    [No Abstract]   [Full Text] [Related]  

  • 17. Generation of an electrochemical proton gradient by lactate efflux in membrane vesicles of Escherichia coli.
    Ten Brink B; Konings WN
    Eur J Biochem; 1980 Oct; 111(1):59-66. PubMed ID: 7002561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubilization of a functionally active proline carrier from membranes of Escherichia coli with an organic solvent.
    Amanuma H; Motojima K; Yamaguchi A; Anraku Y
    Biochem Biophys Res Commun; 1977 Jan; 74(2):366-73. PubMed ID: 319795
    [No Abstract]   [Full Text] [Related]  

  • 19. Sodium-proton antiport in isolated membrane vesicles of Escherichia coli.
    Schuldiner S; Fishkes H
    Biochemistry; 1978 Feb; 17(4):706-11. PubMed ID: 23828
    [No Abstract]   [Full Text] [Related]  

  • 20. Electrogenic ATP-dependent Cl- transport by plasma membrane vesicles from Aplysia intestine.
    Gerencser GA
    Am J Physiol; 1988 Jan; 254(1 Pt 2):R127-33. PubMed ID: 3337266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.