BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17212524)

  • 21. Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears.
    Chu CR; Williams A; Tolliver D; Kwoh CK; Bruno S; Irrgang JJ
    Arthritis Rheum; 2010 May; 62(5):1412-20. PubMed ID: 20213801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in submicroscopic structure of the extracellular matrix of canine femoral and tibial condylar articular cartilages as revealed by polarization microscopical analysis.
    Módis L; Botos A; Kiviranta I; Lukácskó L; Helminen HJ
    Acta Biol Hung; 1996; 47(1-4):341-53. PubMed ID: 9124004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of burn depth by polarization-sensitive optical coherence tomography.
    Srinivas SM; de Boer JF; Park H; Keikhanzadeh K; Huang HE; Zhang J; Jung WQ; Chen Z; Nelson JS
    J Biomed Opt; 2004; 9(1):207-12. PubMed ID: 14715075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative determination of morphological and territorial structures of articular cartilage from both perpendicular and parallel sections by polarized light microscopy.
    Mittelstaedt D; Xia Y; Shmelyov A; Casciani N; Bidthanapally A
    Connect Tissue Res; 2011; 52(6):512-22. PubMed ID: 21787136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system.
    Chen Y; Otis L; Piao D; Zhu Q
    Appl Opt; 2005 Apr; 44(11):2041-8. PubMed ID: 15835353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maturation of collagen fibril network structure in tibial and femoral cartilage of rabbits.
    Julkunen P; Iivarinen J; Brama PA; Arokoski J; Jurvelin JS; Helminen HJ
    Osteoarthritis Cartilage; 2010 Mar; 18(3):406-15. PubMed ID: 19941998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polarized IR microscopic imaging of articular cartilage.
    Ramakrishnan N; Xia Y; Bidthanapally A
    Phys Med Biol; 2007 Aug; 52(15):4601-14. PubMed ID: 17634653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Possibility of using cartilage cultured in centrifuge tube as a substitute for meniscus].
    Wang J; Yang Z; Xie H; Qin T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Sep; 18(5):426-30. PubMed ID: 15460061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of spatial coherence in polarization tomography.
    Aiello A; Woerdman JP
    Opt Lett; 2005 Jul; 30(13):1599-601. PubMed ID: 16075509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polarization-sensitive optoacoustic tomography of optically diffuse tissues.
    Razansky D; Vinegoni C; Ntziachristos V
    Opt Lett; 2008 Oct; 33(20):2308-10. PubMed ID: 18923605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography.
    Henry FP; Wang Y; Rodriguez CL; Randolph MA; Rust EA; Winograd JM; de Boer JF; Park BH
    J Biomed Opt; 2015 Apr; 20(4):046002. PubMed ID: 25858593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography.
    Götzinger E; Pircher M; Geitzenauer W; Ahlers C; Baumann B; Michels S; Schmidt-Erfurth U; Hitzenberger CK
    Opt Express; 2008 Oct; 16(21):16410-22. PubMed ID: 18852747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components.
    Park BH; Pierce MC; Cense B; de Boer JF
    Opt Lett; 2004 Nov; 29(21):2512-4. PubMed ID: 15584278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing.
    Oh WY; Yun SH; Vakoc BJ; Shishkov M; Desjardins AE; Park BH; de Boer JF; Tearney GJ; Bouma BE
    Opt Express; 2008 Jan; 16(2):1096-103. PubMed ID: 18542183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stokes polarimetry imaging of rat tail tissue in a turbid medium: degree of linear polarization image maps using incident linearly polarized light.
    Wu PJ; Walsh JT
    J Biomed Opt; 2006; 11(1):014031. PubMed ID: 16526908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical coherence tomography grading correlates with MRI T2 mapping and extracellular matrix content.
    Bear DM; Williams A; Chu CT; Coyle CH; Chu CR
    J Orthop Res; 2010 Apr; 28(4):546-52. PubMed ID: 19834953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation.
    Yamanari M; Makita S; Yasuno Y
    Opt Express; 2008 Apr; 16(8):5892-906. PubMed ID: 18542701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of arterial characteristics in human atherosclerosis by extracting optical properties from polarization-sensitive optical coherence tomography.
    Kuo WC; Hsiung MW; Shyu JJ; Chou NK; Yang PN
    Opt Express; 2008 May; 16(11):8117-25. PubMed ID: 18545524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fibre orientation contrast for depth-resolved identification of structural interfaces in birefringent tissue.
    Kemp NJ; Park J; Zaatari HN; Rylander HG; Milner TE
    Phys Med Biol; 2006 Aug; 51(15):3759-67. PubMed ID: 16861779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification of the wound healing using polarization-sensitive optical coherence tomography.
    Oh JT; Lee SW; Kim YS; Suhr KB; Kim BM
    J Biomed Opt; 2006; 11(4):041124. PubMed ID: 16965152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.