BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17212525)

  • 1. Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography.
    Cobb MJ; Chen Y; Underwood RA; Usui ML; Olerud J; Li X
    J Biomed Opt; 2006; 11(6):064002. PubMed ID: 17212525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the wound healing using polarization-sensitive optical coherence tomography.
    Oh JT; Lee SW; Kim YS; Suhr KB; Kim BM
    J Biomed Opt; 2006; 11(4):041124. PubMed ID: 16965152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis.
    Lingley-Papadopoulos CA; Loew MH; Manyak MJ; Zara JM
    J Biomed Opt; 2008; 13(2):024003. PubMed ID: 18465966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated classification of optical coherence tomography images for the diagnosis of oral malignancy in the hamster cheek pouch.
    Pande P; Shrestha S; Park J; Serafino MJ; Gimenez-Conti I; Brandon J; Cheng YS; Applegate BE; Jo JA
    J Biomed Opt; 2014 Aug; 19(8):086022. PubMed ID: 25162909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms.
    Liu B; Harman M; Brezinski ME
    J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):262-71. PubMed ID: 15717555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.
    Cheng Y; Larin KV
    Appl Opt; 2006 Dec; 45(36):9238-45. PubMed ID: 17151765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for optical coherence tomography image classification using local features and earth mover's distance.
    Sun Y; Lei M
    J Biomed Opt; 2009; 14(5):054037. PubMed ID: 19895138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-retinal layer segmentation in optical coherence tomography images.
    Mishra A; Wong A; Bizheva K; Clausi DA
    Opt Express; 2009 Dec; 17(26):23719-28. PubMed ID: 20052083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing.
    Lange-Asschenfeldt S; Bob A; Terhorst D; Ulrich M; Fluhr J; Mendez G; Roewert-Huber HJ; Stockfleth E; Lange-Asschenfeldt B
    J Biomed Opt; 2012 Jul; 17(7):076016. PubMed ID: 22894499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive and high-resolution optical monitoring of healing of diabetic dermal excisional wounds implanted with biodegradable in situ gelable hydrogels.
    Yuan Z; Zakhaleva J; Ren H; Liu J; Chen W; Pan Y
    Tissue Eng Part C Methods; 2010 Apr; 16(2):237-47. PubMed ID: 19496703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional in vivo imaging for monitoring wound healing using swept-source polarization-sensitive optical coherence tomography.
    Park KS; Choi WJ; Song S; Xu J; Wang RK
    Lasers Surg Med; 2018 Mar; 50(3):213-221. PubMed ID: 29193202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of optical coherence tomography as a non-invasive diagnostic tool in cutaneous wound healing.
    Kuck M; Strese H; Alawi SA; Meinke MC; Fluhr JW; Burbach GJ; Krah M; Sterry W; Lademann J
    Skin Res Technol; 2014 Feb; 20(1):1-7. PubMed ID: 23782399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based parameter recovery from uncalibrated optical images.
    Preece SJ; Styles IB; Cotton SD; Claridge E; Calcagni A
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):509-16. PubMed ID: 16685998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study.
    Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L
    J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT).
    Li Q; Onozato ML; Andrews PM; Chen CW; Paek A; Naphas R; Yuan S; Jiang J; Cable A; Chen Y
    Opt Express; 2009 Aug; 17(18):16000-16. PubMed ID: 19724599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of image quality of superimposed projection using multiple projectors.
    Okatani T; Wada M; Deguchi K
    IEEE Trans Image Process; 2009 Feb; 18(2):424-9. PubMed ID: 19116198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mono- and multimodal registration of optical breast images.
    Pearlman PC; Adams A; Elias SG; Mali WP; Viergever MA; Pluim JP
    J Biomed Opt; 2012 Aug; 17(8):080901-1. PubMed ID: 23224161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images.
    Zysk AM; Boppart SA
    J Biomed Opt; 2006; 11(5):054015. PubMed ID: 17092164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical coherence tomography: a reliable alternative to invasive histological assessment of acute wound healing in human skin?
    Greaves NS; Benatar B; Whiteside S; Alonso-Rasgado T; Baguneid M; Bayat A
    Br J Dermatol; 2014 Apr; 170(4):840-50. PubMed ID: 24329481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.