BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 17212549)

  • 1. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range.
    Salomatina E; Jiang B; Novak J; Yaroslavsky AN
    J Biomed Opt; 2006; 11(6):064026. PubMed ID: 17212549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range.
    Yaroslavsky AN; Schulze PC; Yaroslavsky IV; Schober R; Ulrich F; Schwarzmaier HJ
    Phys Med Biol; 2002 Jun; 47(12):2059-73. PubMed ID: 12118601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique.
    Simpson CR; Kohl M; Essenpreis M; Cope M
    Phys Med Biol; 1998 Sep; 43(9):2465-78. PubMed ID: 9755939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical properties of normal and diseased human breast tissues in the visible and near infrared.
    Peters VG; Wyman DR; Patterson MS; Frank GL
    Phys Med Biol; 1990 Sep; 35(9):1317-34. PubMed ID: 2236211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spectral characteristics of normal breast samples in the 350-850 nm wavelength range].
    Wang YH; Yang HQ; Xie SS; Ye Z; Su YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2751-5. PubMed ID: 20038053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis.
    Shimojo Y; Nishimura T; Hazama H; Ozawa T; Awazu K
    J Biomed Opt; 2020 Apr; 25(4):1-14. PubMed ID: 32356424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1,100 nm.
    Ao H; Xing D; Wei H; Gu H; Wu G; Lu J
    Phys Med Biol; 2008 Apr; 53(8):2197-206. PubMed ID: 18385526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical properties of porcine skin dermis between 900 nm and 1500 nm.
    Du Y; Hu XH; Cariveau M; Ma X; Kalmus GW; Lu JQ
    Phys Med Biol; 2001 Jan; 46(1):167-81. PubMed ID: 11197670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin.
    Marchesini R; Clemente C; Pignoli E; Brambilla M
    J Photochem Photobiol B; 1992 Oct; 16(2):127-40. PubMed ID: 1474422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence tomography of basal cell carcinoma: density and signal attenuation.
    YĆ¼cel D; Themstrup L; Manfredi M; Jemec GB
    Skin Res Technol; 2016 Nov; 22(4):497-504. PubMed ID: 27264340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromophore concentrations, absorption and scattering properties of human skin in-vivo.
    Tseng SH; Bargo P; Durkin A; Kollias N
    Opt Express; 2009 Aug; 17(17):14599-617. PubMed ID: 19687939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature induced changes in the optical properties of skin in vivo.
    Iorizzo TW; Jermain PR; Salomatina E; Muzikansky A; Yaroslavsky AN
    Sci Rep; 2021 Jan; 11(1):754. PubMed ID: 33436982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared parameters extraction: A potential method to detect skin cancer.
    Truong BC; Tuan HD; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():33-6. PubMed ID: 24109617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal confocal microscopy for diagnosing nonmelanoma skin cancers.
    Al-Arashi MY; Salomatina E; Yaroslavsky AN
    Lasers Surg Med; 2007 Oct; 39(9):696-705. PubMed ID: 17960751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical and thermal properties of nasal septal cartilage.
    Youn JI; Telenkov SA; Kim E; Bhavaraju NC; Wong BJ; Valvano JW; Milner TE
    Lasers Surg Med; 2000; 27(2):119-28. PubMed ID: 10960818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral Remittance and Transmittance of Visible and Infrared-A Radiation in Human Skin-Comparison Between in vivo Measurements and Model Calculations.
    Piazena H; Meffert H; Uebelhack R
    Photochem Photobiol; 2017 Nov; 93(6):1449-1461. PubMed ID: 28471473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-contrast mapping of basal cell carcinomas.
    Yaroslavsky AN; Patel R; Salomatina E; Li C; Lin C; Al-Arashi M; Neel V
    Opt Lett; 2012 Feb; 37(4):644-6. PubMed ID: 22344134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single probe light reflectance spectroscopy and parameter spectrum feature extraction in experimental skin cancer detection and classification.
    Abookasis D; Shemesh D; Litwin A; Siegelmann HT; Didkovsky E; Ad-El DD
    J Biophotonics; 2023 Aug; 16(8):e202300001. PubMed ID: 37078262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.