These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17212835)

  • 1. Least-squares methods for identifying biochemical regulatory networks from noisy measurements.
    Kim J; Bates DG; Postlethwaite I; Heslop-Harrison P; Cho KH
    BMC Bioinformatics; 2007 Jan; 8():8. PubMed ID: 17212835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks.
    Kim CS
    BMC Bioinformatics; 2007 Jul; 8():251. PubMed ID: 17626641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S-system parameter estimation for noisy metabolic profiles using newton-flow analysis.
    Kutalik Z; Tucker W; Moulton V
    IET Syst Biol; 2007 May; 1(3):174-80. PubMed ID: 17591176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained Fourier estimation of short-term time-series gene expression data reduces noise and improves clustering and gene regulatory network predictions.
    Bar N; Nikparvar B; Jayavelu ND; Roessler FK
    BMC Bioinformatics; 2022 Aug; 23(1):330. PubMed ID: 35945515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving protein protein interaction prediction based on phylogenetic information using a least-squares support vector machine.
    Craig RA; Liao L
    Ann N Y Acad Sci; 2007 Dec; 1115():154-67. PubMed ID: 17925357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network completion using dynamic programming and least-squares fitting.
    Nakajima N; Tamura T; Yamanishi Y; Horimoto K; Akutsu T
    ScientificWorldJournal; 2012; 2012():957620. PubMed ID: 23213307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter estimation in stochastic biochemical reactions.
    Reinker S; Altman RM; Timmer J
    Syst Biol (Stevenage); 2006 Jul; 153(4):168-78. PubMed ID: 16986618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective integration of multiple biological data for supervised network inference.
    Kato T; Tsuda K; Asai K
    Bioinformatics; 2005 May; 21(10):2488-95. PubMed ID: 15728114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
    Caglar MU; Pal R
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1125-36. PubMed ID: 24384703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the attenuation and amplification of molecular noise in genetic regulatory networks.
    Chen BS; Wang YC
    BMC Bioinformatics; 2006 Feb; 7():52. PubMed ID: 16457708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing biological networks using conditional correlation analysis.
    Rice JJ; Tu Y; Stolovitzky G
    Bioinformatics; 2005 Mar; 21(6):765-73. PubMed ID: 15486043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bootstrapping least-squares estimates in biochemical reaction networks.
    Linder DF; Rempała GA
    J Biol Dyn; 2015; 9(1):125-46. PubMed ID: 25898769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A parallel algorithm for reverse engineering of biological networks.
    Bazil JN; Qi F; Beard DA
    Integr Biol (Camb); 2011 Dec; 3(12):1215-23. PubMed ID: 22080176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of nonlinearities and uncorrelated or correlated errors in realistic simulated data on the prediction abilities of augmented classical least squares and partial least squares.
    Melgaard DK; Haaland DM
    Appl Spectrosc; 2004 Sep; 58(9):1065-73. PubMed ID: 15479523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unravelling gene networks from noisy under-determined experimental perturbation data.
    de la Fuente A; Makhecha DP
    Syst Biol (Stevenage); 2006 Jul; 153(4):257-62. PubMed ID: 16986627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles.
    Ho SY; Hsieh CH; Yu FC; Huang HL
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):648-704. PubMed ID: 17975275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Causal relationship inference for a large-scale cellular network.
    Zhou T; Wang YL
    Bioinformatics; 2010 Aug; 26(16):2020-8. PubMed ID: 20554691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic
    Ben Bouallègue F; Vauchot F; Mariano-Goulart D
    Med Phys; 2019 Mar; 46(3):1260-1271. PubMed ID: 30592540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.