These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 17213657)

  • 1. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds.
    Masai E; Katayama Y; Fukuda M
    Biosci Biotechnol Biochem; 2007 Jan; 71(1):1-15. PubMed ID: 17213657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism.
    Kamimura N; Takahashi K; Mori K; Araki T; Fujita M; Higuchi Y; Masai E
    Environ Microbiol Rep; 2017 Dec; 9(6):679-705. PubMed ID: 29052962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Recent advances in Sphingobium sp. SYK-6 for lignin aromatic compounds degradation--a review].
    Zhang X; Peng X; Masai E
    Wei Sheng Wu Xue Bao; 2014 Aug; 54(8):854-67. PubMed ID: 25345016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Sphingomonas paucimobilis SYK-6 genes involved in degradation of lignin-related compounds.
    Masai E; Katayama Y; Nishikawa S; Fukuda M
    J Ind Microbiol Biotechnol; 1999 Oct; 23(4-5):364-373. PubMed ID: 11423957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the 3-O-methylgallate dioxygenase gene and evidence of multiple 3-O-methylgallate catabolic pathways in Sphingomonas paucimobilis SYK-6.
    Kasai D; Masai E; Miyauchi K; Katayama Y; Fukuda M
    J Bacteriol; 2004 Aug; 186(15):4951-9. PubMed ID: 15262932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of 3-O-methylgallate in Sphingomonas paucimobilis SYK-6 by pathways involving protocatechuate 4,5-dioxygenase.
    Kasai D; Masai E; Katayama Y; Fukuda M
    FEMS Microbiol Lett; 2007 Sep; 274(2):323-8. PubMed ID: 17645527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6.
    Pereira JH; Heins RA; Gall DL; McAndrew RP; Deng K; Holland KC; Donohue TJ; Noguera DR; Simmons BA; Sale KL; Ralph J; Adams PD
    J Biol Chem; 2016 May; 291(19):10228-38. PubMed ID: 26940872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways for degradation of lignin in bacteria and fungi.
    Bugg TD; Ahmad M; Hardiman EM; Rahmanpour R
    Nat Prod Rep; 2011 Nov; 28(12):1883-96. PubMed ID: 21918777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial Catabolism of β-Hydroxypropiovanillone and β-Hydroxypropiosyringone Produced in the Reductive Cleavage of Arylglycerol-β-Aryl Ether in Lignin.
    Higuchi Y; Aoki S; Takenami H; Kamimura N; Takahashi K; Hishiyama S; Lancefield CS; Ojo OS; Katayama Y; Westwood NJ; Masai E
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374031
    [No Abstract]   [Full Text] [Related]  

  • 10. Degradation of lignin β-aryl ether units in Arabidopsis thaliana expressing LigD, LigF and LigG from Sphingomonas paucimobilis SYK-6.
    Mnich E; Vanholme R; Oyarce P; Liu S; Lu F; Goeminne G; Jørgensen B; Motawie MS; Boerjan W; Ralph J; Ulvskov P; Møller BL; Bjarnholt N; Harholt J
    Plant Biotechnol J; 2017 May; 15(5):581-593. PubMed ID: 27775869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by Sphingomonas paucimobilis SYK-6.
    Kasai D; Masai E; Miyauchi K; Katayama Y; Fukuda M
    J Bacteriol; 2005 Aug; 187(15):5067-74. PubMed ID: 16030198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete genome reveals genetic repertoire and potential metabolic strategies involved in lignin degradation by environmental ligninolytic Klebsiella variicola P1CD1.
    Dos Santos Melo-Nascimento AO; Mota Moitinho Sant Anna B; Gonçalves CC; Santos G; Noronha E; Parachin N; de Abreu Roque MR; Bruce T
    PLoS One; 2020; 15(12):e0243739. PubMed ID: 33351813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 4-oxalomesaconate hydratase gene, involved in the protocatechuate 4,5-cleavage pathway, is essential to vanillate and syringate degradation in Sphingomonas paucimobilis SYK-6.
    Hara H; Masai E; Katayama Y; Fukuda M
    J Bacteriol; 2000 Dec; 182(24):6950-7. PubMed ID: 11092855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6.
    Abe T; Masai E; Miyauchi K; Katayama Y; Fukuda M
    J Bacteriol; 2005 Mar; 187(6):2030-7. PubMed ID: 15743951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular pathways for lignin catabolism in white-rot fungi.
    Del Cerro C; Erickson E; Dong T; Wong AR; Eder EK; Purvine SO; Mitchell HD; Weitz KK; Markillie LM; Burnet MC; Hoyt DW; Chu RK; Cheng JF; Ramirez KJ; Katahira R; Xiong W; Himmel ME; Subramanian V; Linger JG; Salvachúa D
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33622792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of two different O demethylation systems in lignin metabolism by Sphingomonas paucimobilis SYK-6: cloning and sequencing of the lignin biphenyl-specific O-demethylase (LigX) gene.
    Sonoki T; Obi T; Kubota S; Higashi M; Masai E; Katayama Y
    Appl Environ Microbiol; 2000 May; 66(5):2125-32. PubMed ID: 10788391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi.
    Lubbers RJM; Dilokpimol A; Visser J; Mäkelä MR; Hildén KS; de Vries RP
    Biotechnol Adv; 2019 Nov; 37(7):107396. PubMed ID: 31075306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of novel enzyme genes involved in the conversion of an arylglycerol-β-aryl ether metabolite and their use in generating a metabolic pathway for lignin valorization.
    Higuchi Y; Kato R; Tsubota K; Kamimura N; Westwood NJ; Masai E
    Metab Eng; 2019 Sep; 55():258-267. PubMed ID: 31390538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups.
    Venkatesagowda B; Dekker RFH
    Enzyme Microb Technol; 2021 Jun; 147():109780. PubMed ID: 33992403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.