BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17213660)

  • 21. Orf5/SolR: a transcriptional repressor of the sol operon of Clostridium acetobutylicum?
    Thormann K; Dürre P
    J Ind Microbiol Biotechnol; 2001 Nov; 27(5):307-13. PubMed ID: 11781806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decreased hydrogen production leads to selective butanol production in co-cultures of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum strain N1-4.
    Nakayama S; Bando Y; Ohnishi A; Kadokura T; Nakazato A
    J Biosci Bioeng; 2013 Feb; 115(2):173-5. PubMed ID: 22999358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis by deletion and site-directed mutagenesis of promoters of the cell wall protein gene operon in Bacillus brevis 47.
    Adachi T; Sakakibara T; Yamagata H; Tsukagoshi N; Udaka S
    Agric Biol Chem; 1991 Jan; 55(1):189-94. PubMed ID: 1368663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and development of two reporter gene systems for Clostridium acetobutylicum.
    Feustel L; Nakotte S; Dürre P
    Appl Environ Microbiol; 2004 Feb; 70(2):798-803. PubMed ID: 14766557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Mutants with high butanol production from a strain of solventogenic Clostridium isolated from olive black-water].
    Cueto PH; Giulietti AM; dos Santos C; Méndez BS
    Rev Argent Microbiol; 1990; 22(2):57-61. PubMed ID: 2287712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utilization of excess sludge by acetone-butanol-ethanol fermentation employing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564).
    Kobayashi G; Eto K; Tashiro Y; Okubo K; Sonomoto K; Ishizaki A
    J Biosci Bioeng; 2005 May; 99(5):517-9. PubMed ID: 16233826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and Investigation of Autolysin Genes in Clostridium saccharoperbutylacetonicum Strain N1-4 for Enhanced Biobutanol Production.
    Jiménez-Bonilla P; Feng J; Wang S; Zhang J; Wang Y; Blersch D; de-Bashan LE; Gaillard P; Guo L; Wang Y
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33514516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular genetics and the initiation of solventogenesis in Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052.
    Wilkinson SR; Young DI; Morris JG; Young M
    FEMS Microbiol Rev; 1995 Oct; 17(3):275-85. PubMed ID: 7576769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-Cas, a highly effective tool for genome editing in Clostridium saccharoperbutylacetonicum N1-4(HMT).
    Atmadjaja AN; Holby V; Harding AJ; Krabben P; Smith HK; Jenkinson ER
    FEMS Microbiol Lett; 2019 Mar; 366(6):. PubMed ID: 30874768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New host-vector system in solvent-producing Clostridium saccharoperbutylacetonicum strain N1-4.
    Nakayama S; Irie R; Kosaka T; Matsuura K; Yoshino S; Furukawa K
    J Gen Appl Microbiol; 2007 Feb; 53(1):53-6. PubMed ID: 17429161
    [No Abstract]   [Full Text] [Related]  

  • 31. Differential regulation of two thiolase genes from Clostridium acetobutylicum DSM 792.
    Winzer K; Lorenz K; Zickner B; Dürre P
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):531-41. PubMed ID: 11075929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum.
    Schaffer S; Isci N; Zickner B; Dürre P
    Electrophoresis; 2002 Jan; 23(1):110-21. PubMed ID: 11824611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequences affecting the regulation of solvent production in Clostridium acetobutylicum.
    Scotcher MC; Huang KX; Harrison ML; Rudolph FB; Bennett GN
    J Ind Microbiol Biotechnol; 2003 Jul; 30(7):414-20. PubMed ID: 12774196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration.
    Chen CK; Blaschek HP
    Appl Environ Microbiol; 1999 Feb; 65(2):499-505. PubMed ID: 9925574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional analysis of the tet(P) operon from Clostridium perfringens.
    Johanesen PA; Lyras D; Bannam TL; Rood JI
    J Bacteriol; 2001 Dec; 183(24):7110-9. PubMed ID: 11717269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum.
    Tomas CA; Beamish J; Papoutsakis ET
    J Bacteriol; 2004 Apr; 186(7):2006-18. PubMed ID: 15028684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824.
    Tangney M; Mitchell WJ
    J Mol Microbiol Biotechnol; 2000 Jan; 2(1):71-80. PubMed ID: 10937490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. KdpE of Clostridium acetobutylicum is a highly specific response regulator controlling only the expression of the kdp operon.
    Behrens M; Dürre P
    J Mol Microbiol Biotechnol; 2000 Jan; 2(1):45-52. PubMed ID: 10937487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq.
    Wang Y; Li X; Mao Y; Blaschek HP
    BMC Genomics; 2012 Mar; 13():102. PubMed ID: 22433311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum.
    Oshiro M; Hanada K; Tashiro Y; Sonomoto K
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):1177-85. PubMed ID: 20502892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.