These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 17213820)
1. The mouse soluble GFRalpha4 receptor activates RET independently of its ligand persephin. Yang J; Runeberg-Roos P; Leppänen VM; Saarma M Oncogene; 2007 May; 26(26):3892-8. PubMed ID: 17213820 [TBL] [Abstract][Full Text] [Related]
2. A model for GFR alpha 4 function and a potential modifying role in multiple endocrine neoplasia 2. Vanhorne JB; Andrew SD; Harrison KJ; Taylor SA; Thomas B; McDonald TJ; Ainsworth PJ; Mulligan LM Oncogene; 2005 Feb; 24(6):1091-7. PubMed ID: 15592530 [TBL] [Abstract][Full Text] [Related]
3. Human glial cell line-derived neurotrophic factor receptor alpha 4 is the receptor for persephin and is predominantly expressed in normal and malignant thyroid medullary cells. Lindahl M; Poteryaev D; Yu L; Arumae U; Timmusk T; Bongarzone I; Aiello A; Pierotti MA; Airaksinen MS; Saarma M J Biol Chem; 2001 Mar; 276(12):9344-51. PubMed ID: 11116144 [TBL] [Abstract][Full Text] [Related]
4. PSPN/GFRalpha4 has a significantly weaker capacity than GDNF/GFRalpha1 to recruit RET to rafts, but promotes neuronal survival and neurite outgrowth. Yang J; Lindahl M; Lindholm P; Virtanen H; Coffey E; Runeberg-Roos P; Saarma M FEBS Lett; 2004 Jul; 569(1-3):267-71. PubMed ID: 15225646 [TBL] [Abstract][Full Text] [Related]
5. Expression and alternative splicing of mouse Gfra4 suggest roles in endocrine cell development. Lindahl M; Timmusk T; Rossi J; Saarma M; Airaksinen MS Mol Cell Neurosci; 2000 Jun; 15(6):522-33. PubMed ID: 10860579 [TBL] [Abstract][Full Text] [Related]
6. Persephin signaling through GFRalpha1: the potential for the treatment of Parkinson's disease. Sidorova YA; Mätlik K; Paveliev M; Lindahl M; Piranen E; Milbrandt J; Arumäe U; Saarma M; Bespalov MM Mol Cell Neurosci; 2010 Jul; 44(3):223-32. PubMed ID: 20350599 [TBL] [Abstract][Full Text] [Related]
7. Functional mapping of receptor specificity domains of glial cell line-derived neurotrophic factor (GDNF) family ligands and production of GFRalpha1 RET-specific agonists. Baloh RH; Tansey MG; Johnson EM; Milbrandt J J Biol Chem; 2000 Feb; 275(5):3412-20. PubMed ID: 10652334 [TBL] [Abstract][Full Text] [Related]
8. Neurotrophic factor receptor RET: structure, cell biology, and inherited diseases. Runeberg-Roos P; Saarma M Ann Med; 2007; 39(8):572-80. PubMed ID: 17934909 [TBL] [Abstract][Full Text] [Related]
9. Ablation of persephin receptor glial cell line-derived neurotrophic factor family receptor alpha4 impairs thyroid calcitonin production in young mice. Lindfors PH; Lindahl M; Rossi J; Saarma M; Airaksinen MS Endocrinology; 2006 May; 147(5):2237-44. PubMed ID: 16497798 [TBL] [Abstract][Full Text] [Related]
10. Mammalian GFRalpha -4, a divergent member of the GFRalpha family of coreceptors for glial cell line-derived neurotrophic factor family ligands, is a receptor for the neurotrophic factor persephin. Masure S; Cik M; Hoefnagel E; Nosrat CA; Van der Linden I; Scott R; Van Gompel P; Lesage AS; Verhasselt P; Ibáñez CF; Gordon RD J Biol Chem; 2000 Dec; 275(50):39427-34. PubMed ID: 10958791 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of glial cell line-derived neurotrophic factor and neurturin in RET/GFRalpha1-expressing cells. Lee RH; Wong WL; Chan CH; Chan SY J Neurosci Res; 2006 Jan; 83(1):80-90. PubMed ID: 16294336 [TBL] [Abstract][Full Text] [Related]
12. The first cysteine-rich domain of the receptor GFRalpha1 stabilizes the binding of GDNF. Virtanen H; Yang J; Bespalov MM; Hiltunen JO; Leppänen VM; Kalkkinen N; Goldman A; Saarma M; Runeberg-Roos P Biochem J; 2005 May; 387(Pt 3):817-24. PubMed ID: 15610063 [TBL] [Abstract][Full Text] [Related]
13. Other neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF). Saarma M; Sariola H Microsc Res Tech; 1999 May 15-Jun 1; 45(4-5):292-302. PubMed ID: 10383122 [TBL] [Abstract][Full Text] [Related]
14. Biochemical and biological responses induced by coupling of Gab1 to phosphatidylinositol 3-kinase in RET-expressing cells. Maeda K; Murakami H; Yoshida R; Ichihara M; Abe A; Hirai M; Murohara T; Takahashi M Biochem Biophys Res Commun; 2004 Oct; 323(1):345-54. PubMed ID: 15351743 [TBL] [Abstract][Full Text] [Related]
15. The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Sawai H; Okada Y; Kazanjian K; Kim J; Hasan S; Hines OJ; Reber HA; Hoon DS; Eibl G Cancer Res; 2005 Dec; 65(24):11536-44. PubMed ID: 16357163 [TBL] [Abstract][Full Text] [Related]
16. Structural studies of GDNF family ligands with their receptors-Insights into ligand recognition and activation of receptor tyrosine kinase RET. Wang X Biochim Biophys Acta; 2013 Oct; 1834(10):2205-12. PubMed ID: 23085183 [TBL] [Abstract][Full Text] [Related]
17. Comparison of GFL-GFRalpha complexes: further evidence relating GFL bend angle to RET signalling. Parkash V; Goldman A Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Jun; 65(Pt 6):551-8. PubMed ID: 19478429 [TBL] [Abstract][Full Text] [Related]
18. GDNF - a stranger in the TGF-beta superfamily? Saarma M Eur J Biochem; 2000 Dec; 267(24):6968-71. PubMed ID: 11106404 [TBL] [Abstract][Full Text] [Related]
19. Gas1 reduces Ret tyrosine 1062 phosphorylation and alters GDNF-mediated intracellular signaling. López-Ramírez MA; Domínguez-Monzón G; Vergara P; Segovia J Int J Dev Neurosci; 2008 Aug; 26(5):497-503. PubMed ID: 18394855 [TBL] [Abstract][Full Text] [Related]
20. GDNF family ligand RET receptor in the brain of adult zebrafish. Lucini C; D'Angelo L; Patruno M; Mascarello F; de Girolamo P; Castaldo L Neurosci Lett; 2011 Sep; 502(3):214-8. PubMed ID: 21839141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]