BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17213942)

  • 1. A small subsurface ion mobility spectrometer sensor for detecting environmental soil-gas contaminants.
    Kanu AB; Hill HH; Gribb MM; Walters RN
    J Environ Monit; 2007 Jan; 9(1):51-60. PubMed ID: 17213942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of microchip for rapid pretreatment of trichloroethylene and tetrachloroethylene volatilized from polluted soil.
    Masaki H; Umaba Y; Hoshi S; Korenaga T
    Environ Sci; 2007; 14(1):1-8. PubMed ID: 17450115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field vapor extraction test and long-term monitoring at a PCE contaminated site.
    Chai JC; Miura N
    J Hazard Mater; 2004 Jul; 110(1-3):85-92. PubMed ID: 15177729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental applications of membrane introduction mass spectrometry.
    Ketola RA; Kotiaho T; Cisper ME; Allen TM
    J Mass Spectrom; 2002 May; 37(5):457-76. PubMed ID: 12112751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing in situ mineralization of recalcitrant organic compounds in vadose zone sediments using delta13C and 14C measurements.
    Kirtland BC; Aelion CM; Stone PA
    J Contam Hydrol; 2005 Jan; 76(1-2):1-18. PubMed ID: 15588571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil vapor extraction in sandy soils: influence of airflow rate.
    Albergaria JT; Alvim-Ferraz Mda C; Delerue-Matos C
    Chemosphere; 2008 Nov; 73(9):1557-61. PubMed ID: 18804838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.
    Kret E; Kiecak A; Malina G; Nijenhuis I; Postawa A
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9877-88. PubMed ID: 25647491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A field and laboratory method for monitoring the concentration and isotopic composition of soil CO2.
    Breecker D; Sharp ZD
    Rapid Commun Mass Spectrom; 2008; 22(4):449-54. PubMed ID: 18186546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity.
    Clemente R; Dickinson NM; Lepp NW
    Environ Pollut; 2008 Sep; 155(2):254-61. PubMed ID: 18249071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Applicability of an electronic nose for detection of volatile chlorinated hydrocarbons in soil].
    Bu FY; Wen XG; Wan M; Liu R; Cai Q; Chen LJ; Zhang YM
    Huan Jing Ke Xue; 2011 Dec; 32(12):3641-6. PubMed ID: 22468532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural attenuation of contaminated soils.
    Mulligan CN; Yong RN
    Environ Int; 2004 Jun; 30(4):587-601. PubMed ID: 15031019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils.
    Steely S; Amarasiriwardena D; Xing B
    Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-phase diffusivity and tortuosity of structured soils.
    Kristensen AH; Thorbjørn A; Jensen MP; Pedersen M; Moldrup P
    J Contam Hydrol; 2010 Jun; 115(1-4):26-33. PubMed ID: 20421139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of trifluralin volatilization in the field: Relation to soil residue and effect of soil incorporation.
    Bedos C; Rousseau-Djabri MF; Gabrielle B; Flura D; Durand B; Barriuso E; Cellier P
    Environ Pollut; 2006 Dec; 144(3):958-66. PubMed ID: 16563584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating competitive sorption mechanisms of volatile organic compounds in soils and sediments using polymers and zeolites.
    Li J; Werth CJ
    Environ Sci Technol; 2001 Feb; 35(3):568-74. PubMed ID: 11351730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time, high-resolution quantitative measurement of multiple soil gas emissions: selected ion flow tube mass spectrometry.
    Milligan DB; Wilson PF; Mautner MN; Freeman CG; McEwan MJ; Clough TJ; Sherlock RR
    J Environ Qual; 2002; 31(2):515-24. PubMed ID: 11931442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and laboratory testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions.
    Tillman FD; Smith JA
    J Contam Hydrol; 2004 Nov; 75(1-2):71-90. PubMed ID: 15385099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subsurface detection of fossil fuel pollutants by photoionization and gas chromatography/mass spectrometry.
    Robbat A; Considine T; Antle PM
    Chemosphere; 2010 Sep; 80(11):1370-6. PubMed ID: 20594575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct monitoring of toxic compounds in air using a portable mass spectrometer.
    Mulligan CC; Justes DR; Noll RJ; Sanders NL; Laughlin BC; Cooks RG
    Analyst; 2006 Apr; 131(4):556-67. PubMed ID: 16568173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.