BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17214479)

  • 1. Multicolor single-molecule spectroscopy with alternating laser excitation for the investigation of interactions and dynamics.
    Ross J; Buschkamp P; Fetting D; Donnermeyer A; Roth CM; Tinnefeld P
    J Phys Chem B; 2007 Jan; 111(2):321-6. PubMed ID: 17214479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics.
    Sobhy MA; Elshenawy MM; Takahashi M; Whitman BH; Walter NG; Hamdan SM
    Rev Sci Instrum; 2011 Nov; 82(11):113702. PubMed ID: 22128979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red light, green light: probing single molecules using alternating-laser excitation.
    Santoso Y; Hwang LC; Le Reste L; Kapanidis AN
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):738-44. PubMed ID: 18631150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlated movement and bending of nucleic acid structures visualized by multicolor single-molecule spectroscopy.
    Person B; Stein IH; Steinhauer C; Vogelsang J; Tinnefeld P
    Chemphyschem; 2009 Jul; 10(9-10):1455-60. PubMed ID: 19499555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternating-laser excitation of single molecules.
    Kapanidis AN; Laurence TA; Lee NK; Margeat E; Kong X; Weiss S
    Acc Chem Res; 2005 Jul; 38(7):523-33. PubMed ID: 16028886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of 8-17 deoxyribozyme studied by three-color alternating-laser excitation of single molecules.
    Lee NK; Koh HR; Han KY; Kim SK
    J Am Chem Soc; 2007 Dec; 129(50):15526-34. PubMed ID: 18027936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances.
    Lee NK; Kapanidis AN; Koh HR; Korlann Y; Ho SO; Kim Y; Gassman N; Kim SK; Weiss S
    Biophys J; 2007 Jan; 92(1):303-12. PubMed ID: 17040983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single molecule FRET for the study on structural dynamics of biomolecules.
    Sugawa M; Arai Y; Iwane AH; Ishii Y; Yanagida T
    Biosystems; 2007 Apr; 88(3):243-50. PubMed ID: 17276585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence coincidence spectroscopy for single-molecule fluorescence resonance energy-transfer measurements.
    Orte A; Clarke RW; Klenerman D
    Anal Chem; 2008 Nov; 80(22):8389-97. PubMed ID: 18855410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami.
    Stein IH; Steinhauer C; Tinnefeld P
    J Am Chem Soc; 2011 Mar; 133(12):4193-5. PubMed ID: 21250689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Signal-on" detection of DNA hole transfer at the single molecule level.
    Takada T; Takeda Y; Fujitsuka M; Majima T
    J Am Chem Soc; 2009 May; 131(19):6656-7. PubMed ID: 19388695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule, real-time measurement of enzyme kinetics by alternating-laser excitation fluorescence resonance energy transfer.
    Lee NK; Koh HR; Han KY; Lee J; Kim SK
    Chem Commun (Camb); 2010 Jul; 46(26):4683-5. PubMed ID: 20517547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular beacon DNA microarray system for rapid detection of E. coli O157:H7 that eliminates the risk of a false negative signal.
    Kim H; Kane MD; Kim S; Dominguez W; Applegate BM; Savikhin S
    Biosens Bioelectron; 2007 Jan; 22(6):1041-7. PubMed ID: 16815005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation.
    Lee NK; Kapanidis AN; Wang Y; Michalet X; Mukhopadhyay J; Ebright RH; Weiss S
    Biophys J; 2005 Apr; 88(4):2939-53. PubMed ID: 15653725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the fraction and stoichiometry of femtomolar levels of biomolecular complexes in an excess of monomer using single-molecule, two-color coincidence detection.
    Orte A; Clarke R; Balasubramanian S; Klenerman D
    Anal Chem; 2006 Nov; 78(22):7707-15. PubMed ID: 17105162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Camera-based single-molecule FRET detection with improved time resolution.
    Farooq S; Hohlbein J
    Phys Chem Chem Phys; 2015 Nov; 17(41):27862-72. PubMed ID: 26439729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternating-laser excitation: single-molecule FRET and beyond.
    Hohlbein J; Craggs TD; Cordes T
    Chem Soc Rev; 2014 Feb; 43(4):1156-71. PubMed ID: 24037326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.