These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17214552)

  • 21. Dynamic evidence for metal ion catalysis in the reaction mediated by a flap endonuclease.
    Tock MR; Frary E; Sayers JR; Grasby JA
    EMBO J; 2003 Mar; 22(5):995-1004. PubMed ID: 12606565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Categoric prediction of metal ion mechanisms in the active sites of 17 select type II restriction endonucleases.
    Advani S; Mishra P; Dubey S; Thakur S
    Biochem Biophys Res Commun; 2010 Nov; 402(2):177-9. PubMed ID: 20888795
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the N-terminal helix in the metal ion-induced activation of the diphtheria toxin repressor DtxR.
    D'Aquino JA; Lattimer JR; Denninger A; D'Aquino KE; Ringe D
    Biochemistry; 2007 Oct; 46(42):11761-70. PubMed ID: 17902703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Critical role of magnesium ions in DNA polymerase beta's closing and active site assembly.
    Yang L; Arora K; Beard WA; Wilson SH; Schlick T
    J Am Chem Soc; 2004 Jul; 126(27):8441-53. PubMed ID: 15238001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift.
    Fenn TD; Ringe D; Petsko GA
    Biochemistry; 2004 Jun; 43(21):6464-74. PubMed ID: 15157080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-dependent DNA cleavage mechanism of the I-CreI LAGLIDADG homing endonuclease.
    Chevalier B; Sussman D; Otis C; Noël AJ; Turmel M; Lemieux C; Stephens K; Monnat RJ; Stoddard BL
    Biochemistry; 2004 Nov; 43(44):14015-26. PubMed ID: 15518550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal ion dependence of DNA cleavage by SepMI and EhoI restriction endonucleases.
    Belkebir A; Azeddoug H
    Microbiol Res; 2013 Feb; 168(2):99-105. PubMed ID: 23017231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roles of divalent metal ions in flap endonuclease-substrate interactions.
    Feng M; Patel D; Dervan JJ; Ceska T; Suck D; Haq I; Sayers JR
    Nat Struct Mol Biol; 2004 May; 11(5):450-6. PubMed ID: 15077103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid.
    Sullivan SM; Holyoak T
    Biochemistry; 2007 Sep; 46(35):10078-88. PubMed ID: 17685635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different effects of base analog substitutions in BamHI restriction site on recognition by BamHI endonuclease and BamHI methylase.
    Kang YK; Lee HB; Noh MJ; Cho NY; Yoo OJ
    Biochem Biophys Res Commun; 1995 Jan; 206(3):997-1002. PubMed ID: 7832816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure and metal binding properties of the lipoprotein MtsA, responsible for iron transport in Streptococcus pyogenes.
    Sun X; Baker HM; Ge R; Sun H; He QY; Baker EN
    Biochemistry; 2009 Jul; 48(26):6184-90. PubMed ID: 19463017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of glycerophosphodiester phosphodiesterase (GDPD) from Thermoanaerobacter tengcongensis, a metal ion-dependent enzyme: insight into the catalytic mechanism.
    Shi L; Liu JF; An XM; Liang DC
    Proteins; 2008 Jul; 72(1):280-8. PubMed ID: 18214974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decreased sensitivity to changes in the concentration of metal ions as the basis for the hyperactivity of DtxR(E175K).
    D'Aquino JA; Denninger AR; Moulin AG; D'Aquino KE; Ringe D
    J Mol Biol; 2009 Jul; 390(1):112-23. PubMed ID: 19433095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of calcium and other metal ions to the EF-hand loops of calmodulin studied by quantum chemical calculations and molecular dynamics simulations.
    Lepsík M; Field MJ
    J Phys Chem B; 2007 Aug; 111(33):10012-22. PubMed ID: 17661504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative evaluation of metal ion binding to PvuII restriction endonuclease.
    José TJ; Conlan LH; Dupureur CM
    J Biol Inorg Chem; 1999 Dec; 4(6):814-23. PubMed ID: 10631614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the vaccinia virus D10 decapping enzyme provides evidence for a two-metal-ion mechanism.
    Soulière MF; Perreault JP; Bisaillon M
    Biochem J; 2009 Apr; 420(1):27-35. PubMed ID: 19210265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of restriction enzyme cofactor requirements: a relationship between metal ion properties and sequence specificity.
    Bowen LM; Dupureur CM
    Biochemistry; 2003 Nov; 42(43):12643-53. PubMed ID: 14580211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One is enough: insights into the two-metal ion nuclease mechanism from global analysis and computational studies.
    Dupureur CM
    Metallomics; 2010 Sep; 2(9):609-20. PubMed ID: 21072352
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing the general base catalysis in the first step of BamHI action by computer simulations.
    Fuxreiter M; Osman R
    Biochemistry; 2001 Dec; 40(49):15017-23. PubMed ID: 11732923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily.
    Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J
    J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.