These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1274 related articles for article (PubMed ID: 17214894)
1. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. Zheng Z; Mosher SL; Fan B; Klessig DF; Chen Z BMC Plant Biol; 2007 Jan; 7():2. PubMed ID: 17214894 [TBL] [Abstract][Full Text] [Related]
2. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Kim KC; Fan B; Chen Z Plant Physiol; 2006 Nov; 142(3):1180-92. PubMed ID: 16963526 [TBL] [Abstract][Full Text] [Related]
3. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Kawamura Y; Takenaka S; Hase S; Kubota M; Ichinose Y; Kanayama Y; Nakaho K; Klessig DF; Takahashi H Plant Cell Physiol; 2009 May; 50(5):924-34. PubMed ID: 19304739 [TBL] [Abstract][Full Text] [Related]
4. Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Nandi A; Kachroo P; Fukushige H; Hildebrand DF; Klessig DF; Shah J Mol Plant Microbe Interact; 2003 Jul; 16(7):588-99. PubMed ID: 12848424 [TBL] [Abstract][Full Text] [Related]
5. Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Xing DH; Lai ZB; Zheng ZY; Vinod KM; Fan BF; Chen ZX Mol Plant; 2008 May; 1(3):459-70. PubMed ID: 19825553 [TBL] [Abstract][Full Text] [Related]
6. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. AbuQamar S; Chen X; Dhawan R; Bluhm B; Salmeron J; Lam S; Dietrich RA; Mengiste T Plant J; 2006 Oct; 48(1):28-44. PubMed ID: 16925600 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. Shi Z; Maximova SN; Liu Y; Verica J; Guiltinan MJ BMC Plant Biol; 2010 Nov; 10():248. PubMed ID: 21078185 [TBL] [Abstract][Full Text] [Related]
8. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Zheng Z; Qamar SA; Chen Z; Mengiste T Plant J; 2006 Nov; 48(4):592-605. PubMed ID: 17059405 [TBL] [Abstract][Full Text] [Related]
9. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Laurie-Berry N; Joardar V; Street IH; Kunkel BN Mol Plant Microbe Interact; 2006 Jul; 19(7):789-800. PubMed ID: 16838791 [TBL] [Abstract][Full Text] [Related]
10. WRKY70 modulates the selection of signaling pathways in plant defense. Li J; Brader G; Kariola T; Palva ET Plant J; 2006 May; 46(3):477-91. PubMed ID: 16623907 [TBL] [Abstract][Full Text] [Related]
11. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Chen L; Zhang L; Yu D Mol Plant Microbe Interact; 2010 May; 23(5):558-65. PubMed ID: 20367464 [TBL] [Abstract][Full Text] [Related]
12. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Attaran E; Rostás M; Zeier J Mol Plant Microbe Interact; 2008 Nov; 21(11):1482-97. PubMed ID: 18842097 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a novel, defense-related Arabidopsis mutant, cir1, isolated by luciferase imaging. Murray SL; Thomson C; Chini A; Read ND; Loake GJ Mol Plant Microbe Interact; 2002 Jun; 15(6):557-66. PubMed ID: 12059104 [TBL] [Abstract][Full Text] [Related]
14. The genetic network controlling the Arabidopsis transcriptional response to Pseudomonas syringae pv. maculicola: roles of major regulators and the phytotoxin coronatine. Wang L; Mitra RM; Hasselmann KD; Sato M; Lenarz-Wyatt L; Cohen JD; Katagiri F; Glazebrook J Mol Plant Microbe Interact; 2008 Nov; 21(11):1408-20. PubMed ID: 18842091 [TBL] [Abstract][Full Text] [Related]
16. The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis. Brader G; Djamei A; Teige M; Palva ET; Hirt H Mol Plant Microbe Interact; 2007 May; 20(5):589-96. PubMed ID: 17506336 [TBL] [Abstract][Full Text] [Related]
17. CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum. Kim SH; Hong JK; Lee SC; Sohn KH; Jung HW; Hwang BK Plant Mol Biol; 2004 Aug; 55(6):883-904. PubMed ID: 15604723 [TBL] [Abstract][Full Text] [Related]
18. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Schön M; Töller A; Diezel C; Roth C; Westphal L; Wiermer M; Somssich IE Mol Plant Microbe Interact; 2013 Jul; 26(7):758-67. PubMed ID: 23617415 [TBL] [Abstract][Full Text] [Related]
19. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096 [TBL] [Abstract][Full Text] [Related]
20. HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress. Dezar CA; Giacomelli JI; Manavella PA; Ré DA; Alves-Ferreira M; Baldwin IT; Bonaventure G; Chan RL J Exp Bot; 2011 Jan; 62(3):1061-76. PubMed ID: 21030388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]