These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 17214981)
1. Differential effects of Ca(2+) on bisphosphonate-induced growth inhibition in breast cancer and mesothelioma cells. Merrell MA; Wakchoure S; Ilvesaro JM; Zinn K; Gehrs B; Lehenkari PP; Harris KW; Selander KS Eur J Pharmacol; 2007 Mar; 559(1):21-31. PubMed ID: 17214981 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of the mevalonate pathway and activation of p38 MAP kinase are independently regulated by nitrogen-containing bisphosphonates in breast cancer cells. Merrell MA; Wakchoure S; Lehenkari PP; Harris KW; Selander KS Eur J Pharmacol; 2007 Sep; 570(1-3):27-37. PubMed ID: 17640631 [TBL] [Abstract][Full Text] [Related]
3. Bisphosphonates inhibit the growth of mesothelioma cells in vitro and in vivo. Wakchoure S; Merrell MA; Aldrich W; Millender-Swain T; Harris KW; Triozzi P; Selander KS Clin Cancer Res; 2006 May; 12(9):2862-8. PubMed ID: 16675582 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of a nitrogen-containing bisphosphonate, minodronate, in conjunction with a p38 mitogen activated protein kinase inhibitor or doxorubicin against malignant bone tumor cells. Kubo T; Shimose S; Matsuo T; Sakai A; Ochi M Cancer Chemother Pharmacol; 2008 Jun; 62(1):111-6. PubMed ID: 17874104 [TBL] [Abstract][Full Text] [Related]
5. TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro. Bigelow RL; Williams BJ; Carroll JL; Daves LK; Cardelli JA Breast Cancer Res Treat; 2009 Sep; 117(1):31-44. PubMed ID: 18787947 [TBL] [Abstract][Full Text] [Related]
6. The relationship between the chemistry and biological activity of the bisphosphonates. Ebetino FH; Hogan AM; Sun S; Tsoumpra MK; Duan X; Triffitt JT; Kwaasi AA; Dunford JE; Barnett BL; Oppermann U; Lundy MW; Boyde A; Kashemirov BA; McKenna CE; Russell RG Bone; 2011 Jul; 49(1):20-33. PubMed ID: 21497677 [TBL] [Abstract][Full Text] [Related]
7. Pamidronate inhibits antiapoptotic bcl-2 expression through inhibition of the mevalonate pathway in prostate cancer PC-3 cells. Iguchi K; Tatsuda Y; Usui S; Hirano K Eur J Pharmacol; 2010 Sep; 641(1):35-40. PubMed ID: 20519142 [TBL] [Abstract][Full Text] [Related]
8. Antitumor effects of bisphosphonates. Green JR Cancer; 2003 Feb; 97(3 Suppl):840-7. PubMed ID: 12548584 [TBL] [Abstract][Full Text] [Related]
9. Bisphosphonate inhibitors of Toxoplasma gondi growth: in vitro, QSAR, and in vivo investigations. Ling Y; Sahota G; Odeh S; Chan JM; Araujo FG; Moreno SN; Oldfield E J Med Chem; 2005 May; 48(9):3130-40. PubMed ID: 15857119 [TBL] [Abstract][Full Text] [Related]
10. Growth inhibition of macrophage-like and other cell types by liposome-encapsulated, calcium-bound, and free bisphosphonates in vitro. Mönkkönen J; Taskinen M; Auriola SO; Urtti A J Drug Target; 1994; 2(4):299-308. PubMed ID: 7858955 [TBL] [Abstract][Full Text] [Related]
12. Lowering bone mineral affinity of bisphosphonates as a therapeutic strategy to optimize skeletal tumor growth inhibition in vivo. Fournier PG; Daubiné F; Lundy MW; Rogers MJ; Ebetino FH; Clézardin P Cancer Res; 2008 Nov; 68(21):8945-53. PubMed ID: 18974139 [TBL] [Abstract][Full Text] [Related]
13. Necrotic actions of nitrogen-containing bisphosphonates and their inhibition by clodronate, a non-nitrogen-containing bisphosphonate in mice: potential for utilization of clodronate as a combination drug with a nitrogen-containing bisphosphonate. Oizumi T; Yamaguchi K; Funayama H; Kuroishi T; Kawamura H; Sugawara S; Endo Y Basic Clin Pharmacol Toxicol; 2009 May; 104(5):384-92. PubMed ID: 19413658 [TBL] [Abstract][Full Text] [Related]
14. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes inhibit proliferation of estrogen receptor-negative breast cancer cells by activation of multiple pathways. Vanderlaag K; Su Y; Frankel AE; Grage H; Smith R; Khan S; Safe S Breast Cancer Res Treat; 2008 May; 109(2):273-83. PubMed ID: 17624585 [TBL] [Abstract][Full Text] [Related]
15. Structure-activity relationships of new heterocycle-containing bisphosphonates as inhibitors of bone resorption and as inhibitors of growth of Dictyostelium discoideum amoebae. Rogers MJ; Xiong X; Brown RJ; Watts DJ; Russell RG; Bayless AV; Ebetino FH Mol Pharmacol; 1995 Feb; 47(2):398-402. PubMed ID: 7870050 [TBL] [Abstract][Full Text] [Related]
16. Mevalonate pathway intermediates downregulate zoledronic acid-induced isopentenyl pyrophosphate and ATP analog formation in human breast cancer cells. Räikkönen J; Mönkkönen H; Auriola S; Mönkkönen J Biochem Pharmacol; 2010 Mar; 79(5):777-83. PubMed ID: 19819230 [TBL] [Abstract][Full Text] [Related]
17. Exploring the anti-tumour activity of bisphosphonates in early breast cancer. Winter MC; Holen I; Coleman RE Cancer Treat Rev; 2008 Aug; 34(5):453-75. PubMed ID: 18423992 [TBL] [Abstract][Full Text] [Related]
18. Bisphosphonate induced growth inhibition of breast cancer cells is augmented by p38 inhibition. Merrell M; Suarez-Cuervo C; Harris KW; Väänänen HK; Selander KS Breast Cancer Res Treat; 2003 Oct; 81(3):231-41. PubMed ID: 14620918 [TBL] [Abstract][Full Text] [Related]
19. A new phenylacetate-bisphosphonate inhibits breast cancer cell growth by proapoptotic and antiangiogenic effects. Sebbah-Louriki M; Colombo BM; el Manouni D; Martin A; Salzmann JL; Leroux Y; Perret GY; Crépin M Anticancer Res; 2002; 22(6C):3925-31. PubMed ID: 12553014 [TBL] [Abstract][Full Text] [Related]
20. In vitro assessment of liposomal neridronate on MDA-MB-231 human breast cancer cells. Chebbi I; Migianu-Griffoni E; Sainte-Catherine O; Lecouvey M; Seksek O Int J Pharm; 2010 Jan; 383(1-2):116-22. PubMed ID: 19748562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]