BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17215058)

  • 1. Heavy-metal-induced ethylene production in Arabidopsis thaliana.
    Arteca RN; Arteca JM
    J Plant Physiol; 2007 Nov; 164(11):1480-8. PubMed ID: 17215058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants.
    Arteca RN; Arteca JM
    J Exp Bot; 2008; 59(11):3019-26. PubMed ID: 18583350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival of Cd-exposed Arabidopsis thaliana: are these plants reproductively challenged?
    Keunen E; Truyens S; Bruckers L; Remans T; Vangronsveld J; Cuypers A
    Plant Physiol Biochem; 2011 Oct; 49(10):1084-91. PubMed ID: 21852144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana.
    Schellingen K; Van Der Straeten D; Remans T; Vangronsveld J; Keunen E; Cuypers A
    Plant Sci; 2015 Oct; 239():137-46. PubMed ID: 26398798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene signaling cross-talk with other hormones in Arabidopsis thaliana exposed to contrasting phosphate availability: Differential effects in roots, leaves and fruits.
    Munné-Bosch S; Simancas B; Müller M
    J Plant Physiol; 2018 Jul; 226():114-122. PubMed ID: 29758376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings.
    Martín-Rejano EM; Camacho-Cristóbal JJ; Herrera-Rodríguez MB; Rexach J; Navarro-Gochicoa MT; González-Fontes A
    Physiol Plant; 2011 Jun; 142(2):170-8. PubMed ID: 21338369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of ethylene and lipid signalling in cadmium-induced programmed cell death in tomato suspension cells.
    Yakimova ET; Kapchina-Toteva VM; Laarhoven LJ; Harren FM; Woltering EJ
    Plant Physiol Biochem; 2006 Oct; 44(10):581-9. PubMed ID: 17079154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper regulates primary root elongation through PIN1-mediated auxin redistribution.
    Yuan HM; Xu HH; Liu WC; Lu YT
    Plant Cell Physiol; 2013 May; 54(5):766-78. PubMed ID: 23396597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of Group 11 transition metals, including gold, on ethylene binding to the ETR1 receptor and growth of Arabidopsis thaliana.
    Binder BM; Rodriguez FI; Bleecker AB; Patterson SE
    FEBS Lett; 2007 Oct; 581(26):5105-9. PubMed ID: 17931631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethylene promotes cadmium-induced root growth inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis.
    Kong X; Li C; Zhang F; Yu Q; Gao S; Zhang M; Tian H; Zhang J; Yuan X; Ding Z
    Plant Cell Environ; 2018 Oct; 41(10):2449-2462. PubMed ID: 29869796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis.
    Jing HC; Schippers JH; Hille J; Dijkwel PP
    J Exp Bot; 2005 Nov; 56(421):2915-23. PubMed ID: 16172137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In seedlings of the heavy metal accumulator Brassica juncea Cu2+ differentially affects transcript amounts for gamma-glutamylcysteine synthetase (gamma-ECS) and metallothionein (MT2).
    Schäfer HJ; Greiner S; Rausch T; Haag-Kerwer A
    FEBS Lett; 1997 Mar; 404(2-3):216-20. PubMed ID: 9119067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cDNA cloning and functional characterization of ETHYLENE INSENSITIVE 3 orthologs from Oncidium Gower Ramsey involved in flower cutting and pollinia cap dislodgement.
    Chen SY; Tsai HC; Raghu R; Do YY; Huang PL
    Plant Physiol Biochem; 2011 Oct; 49(10):1209-19. PubMed ID: 21775159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants.
    Franceschi VR; Tarlyn NM
    Plant Physiol; 2002 Oct; 130(2):649-56. PubMed ID: 12376632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling ethylene responses in flowers at the receptor level.
    Serek M; Woltering EJ; Sisler EC; Frello S; Sriskandarajah S
    Biotechnol Adv; 2006; 24(4):368-81. PubMed ID: 16584864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of ethylene and gibberellin signalings in chromosaponin I-induced cell division and cell elongation in the roots of Arabidopsis seedlings.
    Rahman A; Tsurumi S; Amakawa T; Soga K; Hoson T; Goto N; Kamisaka S
    Plant Cell Physiol; 2000 Jan; 41(1):1-9. PubMed ID: 10750702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings.
    Wang R; Wang J; Zhao L; Yang S; Song Y
    Biometals; 2015 Feb; 28(1):123-32. PubMed ID: 25416404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of Arabidopsis halleri to cesium and strontium in hydroponics: Extraction potential and effects on morphology and physiology.
    Burger A; Weidinger M; Adlassnig W; Puschenreiter M; Lichtscheidl I
    Ecotoxicol Environ Saf; 2019 Nov; 184():109625. PubMed ID: 31518824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings.
    Camacho-Cristóbal JJ; Martín-Rejano EM; Herrera-Rodríguez MB; Navarro-Gochicoa MT; Rexach J; González-Fontes A
    J Exp Bot; 2015 Jul; 66(13):3831-40. PubMed ID: 25922480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.