These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 17215360)

  • 21. Fibronectin Splicing Variants Containing Extra Domain A Promote Atherosclerosis in Mice Through Toll-Like Receptor 4.
    Doddapattar P; Gandhi C; Prakash P; Dhanesha N; Grumbach IM; Dailey ME; Lentz SR; Chauhan AK
    Arterioscler Thromb Vasc Biol; 2015 Nov; 35(11):2391-400. PubMed ID: 26427793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo MRI detection of intraplaque macrophages with biocompatible silica-coated iron oxide nanoparticles in murine atherosclerosis.
    Kim CW; Hwang BH; Moon H; Kang J; Park EH; Ihm SH; Chang K; Hong KS
    J Appl Biomater Funct Mater; 2021; 19():22808000211014751. PubMed ID: 34520279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence reflectance imaging of macrophage-rich atherosclerotic plaques using an alphavbeta3 integrin-targeted fluorochrome.
    Waldeck J; Häger F; Höltke C; Lanckohr C; von Wallbrunn A; Torsello G; Heindel W; Theilmeier G; Schäfers M; Bremer C
    J Nucl Med; 2008 Nov; 49(11):1845-51. PubMed ID: 18927332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo.
    Deguchi JO; Aikawa M; Tung CH; Aikawa E; Kim DE; Ntziachristos V; Weissleder R; Libby P
    Circulation; 2006 Jul; 114(1):55-62. PubMed ID: 16801460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice.
    Wang F; Okamoto Y; Inoki I; Yoshioka K; Du W; Qi X; Takuwa N; Gonda K; Yamamoto Y; Ohkawa R; Nishiuchi T; Sugimoto N; Yatomi Y; Mitsumori K; Asano M; Kinoshita M; Takuwa Y
    J Clin Invest; 2010 Nov; 120(11):3979-95. PubMed ID: 20978351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functionalization of gadolinium metallofullerenes for detecting atherosclerotic plaque lesions by cardiovascular magnetic resonance.
    Dellinger A; Olson J; Link K; Vance S; Sandros MG; Yang J; Zhou Z; Kepley CL
    J Cardiovasc Magn Reson; 2013 Jan; 15(1):7. PubMed ID: 23324435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insulin-Like Growth Factor-1 Receptor Deficiency in Macrophages Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Apolipoprotein E-Deficient Mice.
    Higashi Y; Sukhanov S; Shai SY; Danchuk S; Tang R; Snarski P; Li Z; Lobelle-Rich P; Wang M; Wang D; Yu H; Korthuis R; Delafontaine P
    Circulation; 2016 Jun; 133(23):2263-78. PubMed ID: 27154724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacological inhibition of C-C chemokine receptor 2 decreases macrophage infiltration in the aortic root of the human C-C chemokine receptor 2/apolipoprotein E-/- mouse: magnetic resonance imaging assessment.
    Olzinski AR; Turner GH; Bernard RE; Karr H; Cornejo CA; Aravindhan K; Hoang B; Ringenberg MA; Qin P; Goodman KB; Willette RN; Macphee CH; Jucker BM; Sehon CA; Gough PJ
    Arterioscler Thromb Vasc Biol; 2010 Feb; 30(2):253-9. PubMed ID: 19965779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Apolipoprotein E-/- Mice Lacking Hemopexin Develop Increased Atherosclerosis via Mechanisms That Include Oxidative Stress and Altered Macrophage Function.
    Mehta NU; Grijalva V; Hama S; Wagner A; Navab M; Fogelman AM; Reddy ST
    Arterioscler Thromb Vasc Biol; 2016 Jun; 36(6):1152-63. PubMed ID: 27079878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deletion of the angiotensin II type 1a receptor prevents atherosclerotic plaque rupture in apolipoprotein E-/- mice.
    Aono J; Suzuki J; Iwai M; Horiuchi M; Nagai T; Nishimura K; Inoue K; Ogimoto A; Okayama H; Higaki J
    Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):1453-9. PubMed ID: 22460554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA.
    Burtea C; Laurent S; Murariu O; Rattat D; Toubeau G; Verbruggen A; Vansthertem D; Vander Elst L; Muller RN
    Cardiovasc Res; 2008 Apr; 78(1):148-57. PubMed ID: 18174291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting P-selectin by gallium-68-labeled fucoidan positron emission tomography for noninvasive characterization of vulnerable plaques: correlation with in vivo 17.6T MRI.
    Li X; Bauer W; Israel I; Kreissl MC; Weirather J; Richter D; Bauer E; Herold V; Jakob P; Buck A; Frantz S; Samnick S
    Arterioscler Thromb Vasc Biol; 2014 Aug; 34(8):1661-7. PubMed ID: 24903095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques.
    Burtea C; Laurent S; Lancelot E; Ballet S; Murariu O; Rousseaux O; Port M; Vander Elst L; Corot C; Muller RN
    Mol Pharm; 2009; 6(6):1903-19. PubMed ID: 19743879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis.
    Maiseyeu A; Mihai G; Kampfrath T; Simonetti OP; Sen CK; Roy S; Rajagopalan S; Parthasarathy S
    J Lipid Res; 2009 Nov; 50(11):2157-63. PubMed ID: 19017616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A leukocyte-mimetic magnetic resonance imaging contrast agent homes rapidly to activated endothelium and tracks with atherosclerotic lesion macrophage content.
    McAteer MA; Mankia K; Ruparelia N; Jefferson A; Nugent HB; Stork LA; Channon KM; Schneider JE; Choudhury RP
    Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):1427-35. PubMed ID: 22499989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging of atherosclerosis in apoliprotein e knockout mice: targeting of a folate-conjugated radiopharmaceutical to activated macrophages.
    Ayala-López W; Xia W; Varghese B; Low PS
    J Nucl Med; 2010 May; 51(5):768-74. PubMed ID: 20395331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques.
    Wu Q; Pan W; Wu G; Wu F; Guo Y; Zhang X
    Atherosclerosis; 2023 Mar; 369():17-26. PubMed ID: 36863196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atherosclerosis and matrix metalloproteinases: experimental molecular MR imaging in vivo.
    Amirbekian V; Aguinaldo JG; Amirbekian S; Hyafil F; Vucic E; Sirol M; Weinreb DB; Le Greneur S; Lancelot E; Corot C; Fisher EA; Galis ZS; Fayad ZA
    Radiology; 2009 May; 251(2):429-38. PubMed ID: 19224894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe-/- mice during disease regression.
    Potteaux S; Gautier EL; Hutchison SB; van Rooijen N; Rader DJ; Thomas MJ; Sorci-Thomas MG; Randolph GJ
    J Clin Invest; 2011 May; 121(5):2025-36. PubMed ID: 21505265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The time window of MRI of murine atherosclerotic plaques after administration of CB2 receptor targeted micelles: inter-scan variability and relation between plaque signal intensity increase and gadolinium content of inversion recovery prepared versus non-prepared fast spin echo.
    te Boekhorst BC; Bovens SM; van de Kolk CW; Cramer MJ; Doevendans PA; ten Hove M; van der Weerd L; Poelmann R; Strijkers GJ; Pasterkamp G; van Echteld CJ
    NMR Biomed; 2010 Oct; 23(8):939-51. PubMed ID: 20878972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.