BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17215371)

  • 1. Mechanism of methanol oxidation by quinoprotein methanol dehydrogenase.
    Zhang X; Reddy SY; Bruice TC
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):745-9. PubMed ID: 17215371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of ammonia activation and ammonium ion inhibition of quinoprotein methanol dehydrogenase: a computational approach.
    Reddy SY; Bruice TC
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15887-92. PubMed ID: 15520392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of enzyme mechanisms by molecular dynamics: studies on quinoproteins, methanol dehydrogenase, and soluble glucose dehydrogenase.
    Reddy SY; Bruice TC
    Protein Sci; 2004 Aug; 13(8):1965-78. PubMed ID: 15273299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico studies of the mechanism of methanol oxidation by quinoprotein methanol dehydrogenase.
    Reddy SY; Bruice TC
    J Am Chem Soc; 2003 Jul; 125(27):8141-50. PubMed ID: 12837084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation of coenzyme pyrroloquinoline quinone and role of Ca2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase.
    Zheng YJ; Bruice TC
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11881-6. PubMed ID: 9342331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic mechanism of quinoprotein methanol dehydrogenase: A theoretical and x-ray crystallographic investigation.
    Zheng YJ; Xia Zx ; Chen Zw ; Mathews FS; Bruice TC
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):432-4. PubMed ID: 11149955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The preferred reaction path for the oxidation of methanol by PQQ-containing methanol dehydrogenase: addition-elimination versus hydride-transfer mechanism.
    Leopoldini M; Russo N; Toscano M
    Chemistry; 2007; 13(7):2109-17. PubMed ID: 17149777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quinoprotein dehydrogenases for methanol and glucose.
    Anthony C
    Arch Biochem Biophys; 2004 Aug; 428(1):2-9. PubMed ID: 15234264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of multiple ligand binding on kinetic isotope effects in PQQ-dependent methanol dehydrogenase.
    Hothi P; Basran J; Sutcliffe MJ; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3966-78. PubMed ID: 12667088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative theoretical study for the methanol dehydrogenation to CO over Pt3 and PtAu2 clusters.
    Zhong W; Liu Y; Zhang D
    J Mol Model; 2012 Jul; 18(7):3051-60. PubMed ID: 22160734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a novel methanol dehydrogenase containing a Ba2+ ion at the active site.
    Goodwin MG; Anthony C
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):673-9. PubMed ID: 8809062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of glucose oxidation by quinoprotein soluble glucose dehydrogenase: insights from molecular dynamics studies.
    Reddy SY; Bruice TC
    J Am Chem Soc; 2004 Mar; 126(8):2431-8. PubMed ID: 14982451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis and X-ray crystallography of the PQQ-containing quinoprotein methanol dehydrogenase and its electron acceptor, cytochrome c(L).
    Afolabi PR; Mohammed F; Amaratunga K; Majekodunmi O; Dales SL; Gill R; Thompson D; Cooper JB; Wood SP; Goodwin PM; Anthony C
    Biochemistry; 2001 Aug; 40(33):9799-809. PubMed ID: 11502173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum chemical modeling of methanol oxidation mechanisms by methanol dehydrogenase enzyme: effect of substitution of calcium by barium in the active site.
    Idupulapati NB; Mainardi DS
    J Phys Chem A; 2010 Feb; 114(4):1887-96. PubMed ID: 20055505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of dilute clusters of methanol and water by ab initio quantum mechanical calculations.
    Ruckenstein E; Shulgin IL; Tilson JL
    J Phys Chem A; 2005 Feb; 109(5):807-15. PubMed ID: 16838951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study on mechanistic details of the aminoethanol rearrangement catalyzed by the vitamin B12-dependent ethanolamine ammonia lyase: His and Asp/Glu acting simultaneously as catalytic auxiliaries.
    Semialjac M; Schwarz H
    J Org Chem; 2003 Sep; 68(18):6967-83. PubMed ID: 12946137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study.
    Engeldinger J; Richter M; Bentrup U
    Phys Chem Chem Phys; 2012 Feb; 14(7):2183-91. PubMed ID: 22090021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model studies on calcium-containing quinoprotein alcohol dehydrogenases. Catalytic role of Ca2+ for the oxidation of alcohols by coenzyme PQQ (4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2, 7,9-tricarboxylic acid).
    Itoh S; Kawakami H; Fukuzumi S
    Biochemistry; 1998 May; 37(18):6562-71. PubMed ID: 9572874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Can Methanol Dehydrogenase from Methylacidiphilum fumariolicum Work with the Alien Ce
    Prejanò M; Marino T; Russo N
    Chemistry; 2017 Jun; 23(36):8652-8657. PubMed ID: 28488399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.