BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17215501)

  • 1. Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion.
    Lajoie K; Drew T
    J Neurophysiol; 2007 Mar; 97(3):2339-54. PubMed ID: 17215501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory.
    Lajoie K; Andujar JE; Pearson K; Drew T
    J Neurophysiol; 2010 Apr; 103(4):2234-54. PubMed ID: 20386041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical mechanisms involved in visuomotor coordination during precision walking.
    Drew T; Andujar JE; Lajoie K; Yakovenko S
    Brain Res Rev; 2008 Jan; 57(1):199-211. PubMed ID: 17935789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contribution of area 5 of the posterior parietal cortex to the planning of visually guided locomotion: limb-specific and limb-independent effects.
    Andujar JE; Lajoie K; Drew T
    J Neurophysiol; 2010 Feb; 103(2):986-1006. PubMed ID: 20018828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption.
    Marigold DS; Drew T
    J Neurophysiol; 2011 May; 105(5):2457-70. PubMed ID: 21411565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chapter 6--motor planning of locomotor adaptations on the basis of vision: the role of the posterior parietal cortex.
    Marigold DS; Andujar JE; Lajoie K; Drew T
    Prog Brain Res; 2011; 188():83-100. PubMed ID: 21333804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posterior parietal cortex estimates the relationship between object and body location during locomotion.
    Marigold DS; Drew T
    Elife; 2017 Oct; 6():. PubMed ID: 29053442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination between the fore- and hindlimbs is bidirectional, asymmetrically organized, and flexible during quadrupedal locomotion in the intact adult cat.
    Thibaudier Y; Hurteau MF; Telonio A; Frigon A
    Neuroscience; 2013 Jun; 240():13-26. PubMed ID: 23485807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the motor cortex in the control of visually triggered gait modifications.
    Drew T; Jiang W; Kably B; Lavoie S
    Can J Physiol Pharmacol; 1996 Apr; 74(4):426-42. PubMed ID: 8828889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of motor and visual information in the parietal area 5 during locomotion.
    Beloozerova IN; Sirota MG
    J Neurophysiol; 2003 Aug; 90(2):961-71. PubMed ID: 12904498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hind limb stepping over obstacles in the horse guided by place-object memory.
    Whishaw IQ; Sacrey LA; Gorny B
    Behav Brain Res; 2009 Mar; 198(2):372-9. PubMed ID: 19071161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion.
    Armstrong DM; Marple-Horvat DE
    Can J Physiol Pharmacol; 1996 Apr; 74(4):443-55. PubMed ID: 8828890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of quadrupedal locomotion in the kitten.
    Howland DR; Bregman BS; Goldberger ME
    Exp Neurol; 1995 Oct; 135(2):93-107. PubMed ID: 7589328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic analysis of locomotion in unilateral vestibular neurectomized cats.
    Lacour M; Sun J; Harlay F
    J Vestib Res; 1997; 7(2-3):101-18. PubMed ID: 9178218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor cortical activity during voluntary gait modifications in the cat. II. Cells related to the hindlimbs.
    Widajewicz W; Kably B; Drew T
    J Neurophysiol; 1994 Nov; 72(5):2070-89. PubMed ID: 7884445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parietal modules for reaching.
    Blangero A; Menz MM; McNamara A; Binkofski F
    Neuropsychologia; 2009 May; 47(6):1500-7. PubMed ID: 19109986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential activity-dependent development of corticospinal control of movement and final limb position during visually guided locomotion.
    Friel KM; Drew T; Martin JH
    J Neurophysiol; 2007 May; 97(5):3396-406. PubMed ID: 17376849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The visuomotor functions of posterior parietal areas.
    Jeannerod M; Farnè A
    Adv Neurol; 2003; 93():205-17. PubMed ID: 12894410
    [No Abstract]   [Full Text] [Related]  

  • 19. The role of the posterior parietal cortex in drawing by copying.
    Ogawa K; Inui T
    Neuropsychologia; 2009 Mar; 47(4):1013-22. PubMed ID: 19027762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan.
    Vesia M; Yan X; Henriques DY; Sergio LE; Crawford JD
    J Neurophysiol; 2008 Oct; 100(4):2005-14. PubMed ID: 18684904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.