These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17215501)

  • 21. The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements.
    Buneo CA; Andersen RA
    Neuropsychologia; 2006; 44(13):2594-606. PubMed ID: 16300804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visuomotor functions of the posterior parietal cortex.
    Jackson SR; Husain M
    Neuropsychologia; 2006; 44(13):2589-93. PubMed ID: 16962619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Taking the next step: cortical contributions to the control of locomotion.
    Drew T; Marigold DS
    Curr Opin Neurobiol; 2015 Aug; 33():25-33. PubMed ID: 25643847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Memory-Guided Stumbling Correction in the Hindlimb of Quadrupeds Relies on Parietal Area 5.
    Wong C; Wong G; Pearson KG; Lomber SG
    Cereb Cortex; 2018 Feb; 28(2):561-573. PubMed ID: 28013232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions of Parietal Cortex to the Working Memory of an Obstacle Acquired Visually or Tactilely in the Locomoting Cat.
    Wong C; Pearson KG; Lomber SG
    Cereb Cortex; 2018 Sep; 28(9):3143-3158. PubMed ID: 28981640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human electrocortical dynamics while stepping over obstacles.
    Nordin AD; Hairston WD; Ferris DP
    Sci Rep; 2019 Mar; 9(1):4693. PubMed ID: 30886202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinematics of obstacle clearance in the rat.
    Perrot O; Laroche D; Pozzo T; Marie C
    Behav Brain Res; 2011 Oct; 224(2):241-9. PubMed ID: 21704082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A kinematic and kinetic analysis of locomotion during voluntary gait modification in the cat.
    Lavoie S; McFadyen B; Drew T
    Exp Brain Res; 1995; 106(1):39-56. PubMed ID: 8542976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facilitation of spinal reflexes assists performing but not learning an obstacle-avoidance locomotor task.
    Michel J; van Hedel HJ; Dietz V
    Eur J Neurosci; 2007 Sep; 26(5):1299-306. PubMed ID: 17767507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats.
    Langlet C; Leblond H; Rossignol S
    J Neurophysiol; 2005 May; 93(5):2474-88. PubMed ID: 15647400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Any way you look at it, successful obstacle negotiation needs visually guided on-line foot placement regulation during the approach phase.
    Patla AE; Greig M
    Neurosci Lett; 2006 Apr 10-17; 397(1-2):110-4. PubMed ID: 16413969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional dissociation of saccade and hand reaching control with bilateral lesions of the medial wall of the intraparietal sulcus: implications for optic ataxia.
    Trillenberg P; Sprenger A; Petersen D; Kömpf D; Heide W; Helmchen C
    Neuroimage; 2007; 36 Suppl 2():T69-76. PubMed ID: 17499172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optic ataxia errors depend on remapped, not viewed, target location.
    Khan AZ; Pisella L; Vighetto A; Cotton F; Luauté J; Boisson D; Salemme R; Crawford JD; Rossetti Y
    Nat Neurosci; 2005 Apr; 8(4):418-20. PubMed ID: 15768034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stable Delay Period Representations in the Posterior Parietal Cortex Facilitate Working-Memory-Guided Obstacle Negotiation.
    Wong C; Lomber SG
    Curr Biol; 2019 Jan; 29(1):70-80.e3. PubMed ID: 30581021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gait adaptation during obstacle crossing reveals impairments in the visual control of locomotion in Williams syndrome.
    Hocking DR; Rinehart NJ; McGinley JL; Galna B; Moss SA; Bradshaw JL
    Neuroscience; 2011 Dec; 197():320-9. PubMed ID: 21945032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maintenance of visual stability in the human posterior parietal cortex.
    Chang E; Ro T
    J Cogn Neurosci; 2007 Feb; 19(2):266-74. PubMed ID: 17280515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Activity of neurons of the motor-sensory cortex of the cat during natural locomotion while stepping over obstacles].
    Beloozerova IN; Sirota MG
    Neirofiziologiia; 1986; 18(4):546-9. PubMed ID: 3762798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Object avoidance during locomotion.
    McVea DA; Pearson KG
    Adv Exp Med Biol; 2009; 629():293-315. PubMed ID: 19227506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gait modification during approach phase when stepping over an obstacle in rats.
    Sato Y; Aoki S; Yanagihara D
    Neurosci Res; 2012 Mar; 72(3):263-9. PubMed ID: 22178543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.