These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 172156)
1. Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium perfringens) on red cells or lymphocytes. Allan D; Low MG; Finean JB; Michell RH Biochim Biophys Acta; 1975 Dec; 413(2):309-16. PubMed ID: 172156 [TBL] [Abstract][Full Text] [Related]
2. Changes in phosoholipid susceptibility toward phospholipases induced by ATP depletion in avian and amphibian erythrocyte membranes. Gazitt Y; Ohad I; Loyter A Biochim Biophys Acta; 1975 Feb; 382(1):65-72. PubMed ID: 164239 [TBL] [Abstract][Full Text] [Related]
3. Elevation of intracellular calcium ion concentration provokes production of 1,2-diacylglycerol and phosphatidate in human erythrocytes. Allan D; Michell RH Biochem Soc Trans; 1975; 3(5):751-2. PubMed ID: 172387 [No Abstract] [Full Text] [Related]
4. Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases. Zwaal RF; Roelofsen B; Comfurius P; van Deenen LL Biochim Biophys Acta; 1975 Sep; 406(1):83-96. PubMed ID: 169915 [TBL] [Abstract][Full Text] [Related]
5. Induction of ornithine decarboxylase in guinea-pig lymphocytes and its relation to phospholipid metabolism. Otani S; Matsui I; Kuramoto A; Morisawa S Biochim Biophys Acta; 1984 Jul; 800(1):96-101. PubMed ID: 6331522 [TBL] [Abstract][Full Text] [Related]
6. Decreased iodination of the red cell surface following phospholipase C treatment. Reichstein E; Blostein R Biochim Biophys Acta; 1977 Aug; 468(3):502-6. PubMed ID: 195610 [TBL] [Abstract][Full Text] [Related]
7. Asymmetric manipulation of the membrane lipid bilayer of intact human erythrocytes with phospholipase A, C, or D induces a change in cell shape. Fujii T; Tamura A J Biochem; 1979 Nov; 86(5):1345-52. PubMed ID: 521437 [TBL] [Abstract][Full Text] [Related]
8. Increase in osmotic fragility of bovine erythrocytes induced by bacterial phospholipases C. Taguchi R; Mizuno M; Inoue M; Ikezawa H J Biochem; 1983 Feb; 93(2):403-12. PubMed ID: 6302097 [TBL] [Abstract][Full Text] [Related]
9. Fusion of intact human erythrocytes and erythrocyte ghosts. Peretz H; Toister Z; Laster Y; Loyter A J Cell Biol; 1974 Oct; 63(1):1-11. PubMed ID: 4371393 [TBL] [Abstract][Full Text] [Related]
10. Correlation between changes in the membrane organization and susceptibility to phospholipase C attack induced by ATP depletion of rat erythrocytes. Gazitt Y; Loyter A; Reichler Y; Ohad I Biochim Biophys Acta; 1976 Feb; 419(3):479-92. PubMed ID: 813771 [TBL] [Abstract][Full Text] [Related]
11. Resolution of the hemolytic and the hydrolytic activities of phospholipase-C preparation from Clostridium perfringens. Sabban E; Laster Y; Loyter A Eur J Biochem; 1972 Jul; 28(3):373-80. PubMed ID: 4342909 [No Abstract] [Full Text] [Related]
12. Studies on (K+ + H+)-ATPase. IV. Effects of phospholipase C treatment. Schrijen JJ; Omachi A; Van Groningen-Luyben WA; De Pont JJ; Bonting SL Biochim Biophys Acta; 1981 Nov; 649(1):1-12. PubMed ID: 6272855 [TBL] [Abstract][Full Text] [Related]
13. Hydrolytic action of phospholipases on bacterial membranes. Taguchi R; Ikezawa H J Biochem; 1977 Nov; 82(5):1225-30. PubMed ID: 201610 [TBL] [Abstract][Full Text] [Related]
14. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Demel RA; Geurts van Kessel WS; Zwaal RF; Roelofsen B; van Deenen LL Biochim Biophys Acta; 1975 Sep; 406(1):97-107. PubMed ID: 1174576 [TBL] [Abstract][Full Text] [Related]
15. The use of phospholipase c to detect structural changes in the membranes of human erythrocytes aged by storage. Shukla SD; Coleman R; Finean JB; Michell RH Biochim Biophys Acta; 1978 Sep; 512(2):341-9. PubMed ID: 213113 [No Abstract] [Full Text] [Related]
16. Lysis of erythrocytes from stored human blood by phospholipase C (Bacillus cereus). Little C; Rumsby MG Biochem J; 1980 Apr; 188(1):39-46. PubMed ID: 6773524 [TBL] [Abstract][Full Text] [Related]
17. Structural studies relating to the distribution of molecular components in erythrocyte membranes. Finean JB; Freeman R; Limbrick AR Philos Trans R Soc Lond B Biol Sci; 1974 Jul; 268(891):15-21. PubMed ID: 4155087 [No Abstract] [Full Text] [Related]
18. Production of 1,2-diacylglycerol and phosphatidate in human erythrocytes treated with calcium ions and ionophore A23187. Allan D; Watts R; Michell RH Biochem J; 1976 May; 156(2):225-32. PubMed ID: 821476 [TBL] [Abstract][Full Text] [Related]
19. Possible relationship between membrane proteins and phospholipid asymmetry in the human erythrocyte membrane. Haest CW; Deuticke B Biochim Biophys Acta; 1976 Jun; 436(2):353-65. PubMed ID: 1276220 [TBL] [Abstract][Full Text] [Related]
20. Calcium ion-dependent diacylglycerol accumulation in erythrocytes is associated with microvesiculation but not with efflux of potassium ions. Allan D; Michell RH Biochem J; 1977 Sep; 166(3):495-9. PubMed ID: 339908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]